Skip to main content

Advertisement

Log in

Delineation of protection zones for springs in fractured volcanic media considering land use and climate change scenarios in central Mexico region

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Delineating spring protection zones is key to managing groundwater. This work presents a proposal for delineating spring protection zones (SPZs) that uses hydrogeological, topographical, land use, and climate characteristics as a basis to protect springs located in fractured volcanic media from potential contamination processes. This was accomplished through five stages: (1) identification of hydrogeological characteristics of the environments in which springs are located and physicochemical properties of water, (2) delineation of spring potential catchment zones, (3) estimation of spring recharge zones in the potential catchment zones, (4) SPZ proposal based on annual recharge analysis for each spring, and (5) projection of future land use and climate change scenarios. The result was a proposal of three typically established zones for protecting springs: SPZ1 was defined by a 50-m radius around springs, SPZ2 was delineated based on spring annual recharge zone estimate, and SPZ3 was considered the remainder of potential catchment zone. By delineating these zones, more suitable protection measures can be identified based on trends in land use and climate changes, measures which would thereby aid in sustainable use of these types of springs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

source protection zoning (PCZ: potential catchment zone, RZ: recharge zone, SPZs: spring protection zones)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Alfieri L, Feyen L, Dottori F, Bianchi A (2015) Ensemble flood risk assessment in Europe under high end climate scenarios. Glob Environ Chang 35:199–212. https://doi.org/10.1016/j.gloenvcha.2015.09.004

    Article  Google Scholar 

  • Al-Manmi DAMA, Saleh KA (2019) Delineation of spring protection zone and vulnerability mapping of selected springs in Sulaymaniyah area, Kurdistan Iraq. Environ Earth Sci 78:622. https://doi.org/10.1007/s12665-019-8632-2

    Article  Google Scholar 

  • Astudillo-Sánchez C, Villanueva-Díaz J, Endara-Agramont AR, Nava-Bernal GE, Gómez-Albores MA (2017) Climatic variability at the treeline of Monte Tlaloc, Mexico: a dendrochronological approach. Trees Struct Funct 31(2):441–453. https://doi.org/10.1007/s00468-016-1460-z

    Article  Google Scholar 

  • AWWA Water Works Association (2017) Source water protection operation guide to AWWA Standard G300. Available online: https://www.awwa.org/store/productdetail

  • Banzato C, Governa M, Petricig M, Vigna B (2015) The importance of monitoring for the determination of aquifer vulnerability and spring protection areas. Eng Geol Soc Territ 5:1379–1385. https://doi.org/10.1007/978-3-319-09048-1_264

    Article  Google Scholar 

  • Benini LMA, Laghi M, Mollema PN (2016) Assessment of water resources availability and groundwater salinization in future climate and land use change scenarios: a case study from a coastal drainage basin in Italy. Water Resour Manag 30(2):731–745. https://doi.org/10.1007/s11269-015-1187-4

    Article  Google Scholar 

  • Biava F, Consonni M, Francani V, Gattinoni P, Scesi L (2014) Delineation of protection zones for the main discharge area of the Gran Sasso Aquifer (Central Italy) through an Integrated geomorphological and chronological approach. J Water Resour Prot 6(19):1816–1832. https://doi.org/10.4236/jwarp.2014.619161

    Article  Google Scholar 

  • Bonacci O, Andrić I (2015) Karst spring catchment: an example from Dinaric karst. Environ Earth Sci 74:6211–6223. https://doi.org/10.1007/s12665-015-4644-8

    Article  Google Scholar 

  • Bonacci O, Jukić D, Ljubenkov I (2006) Definition of catchment area in karst: case of the rivers Krčić and Krka, Croatia. Hydrol Sci J des Sci Hydrol 51(4):682–699. https://doi.org/10.1623/hysj.51.4.682

    Article  Google Scholar 

  • CCAFS (2014) Climate Change, Agriculture and Food Security (CCAFS)-Climate data: Spatial downscaling data. Recuperado el 22 de mayo de 2018, de http://www.ccafs-climate.org/data_spatial_downscaling/

  • CGIAR-CSI (2016) Consortium for Spatial Information (CGIAR-CSI). Obtenido de http://www.cgiar-csi.org/data

  • Chávez R, Lara F, Sención R (2006) El agua subterránea en México: condición actual y retos para un manejo sostenible. Bol Geol Min 117(1):115–126

    Google Scholar 

  • CICESE-INECC (2014) Estudio para la incorporación de nuevas variables en los escenarios de cambio climático para México utilizados en la Quinta Comunicación Nacional (Parte I). Análisis de Variables Atmosféricas (Históricas y Escenarios de Cambio Climático). México: Centro de Investigación Científica y de Educación Superior de Ensenada—Instituto Nacional de Ecología y Cambio Climático

  • CONABIO (2009) Uso de suelo y vegetación. Obtenido de Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: https://www.gob.mx/conabio

  • CONAGUA (2007) Manual de agua potable, alcantarillado y saneamiento. Delimitación de las zonas de protección de pozos para agua, 2007th edn. Comisión Nacional del Agua, México

    Google Scholar 

  • Conde C, Estrada F, Martínez B (2011) Regional climate change scenarios for México. Atmósfera 24(1):125–140

    Google Scholar 

  • Cuervo-Robayo AP, Téllez-Valdés O, Gómez-Albores MA, Venegas-Barrera CS, Manjarrez J, Martínez-Meyer E (2014) An update of highresolution monthly climate surfaces for Mexico. Int J Climatol 34:2427–2437

    Article  Google Scholar 

  • Cuervo-Robayo AP, Ureta C, Gómez-Albores MA, Meneses-Mosquera AK, Téllez-Valdés O, Martínez-Meyer E (2020) One hundred years of climate change in Mexico. PLoS ONE 15(7July):1–19. https://doi.org/10.1371/journal.pone.0209808

    Article  Google Scholar 

  • Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast) (Text with EEA relevance). Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj

  • DOF (2002) Norma Oficial Mexicana NOM-011-CONAGUA-2000, Conservación del recurso agua-Que establece las especificaciones y el método para determinar la disponibilidad media anual de las aguas nacionales. Diario Oficial de la Federación, México

    Google Scholar 

  • Eastman JR (2016) IDRISI TerrSet. Geoespacial Monitoring and Modeling System. Clark Labs at Clark University, Massachusetts

    Google Scholar 

  • Eastman JR, He J (2020) A regression-based procedure for markov transition probability estimation in land change modeling. Land 9(11):1–12. https://doi.org/10.3390/land9110407

    Article  Google Scholar 

  • Eastman JR, Crema SC, Rush HR (2019) A weighted normalized likelihood procedure for empirical land change modeling. Model Earth Syst Environ 5:985–996. https://doi.org/10.1007/s40808-019-00584-0

    Article  Google Scholar 

  • Environment Agency (2009) Groundwater source protection zones: review of methods. Environment Agency, United Kingdom

    Google Scholar 

  • Enviroment Agency (2019) Manual for the production of Groundwater Source Protection Zones. www.gov.uk/environment-agency.

  • Farjad B, Gupta A, Marceau DJ (2016) Annual and seasonal variations of hydrological processes under climate change scenarios in two sub-catchments of a complex watershed. Water Resour Manag 30:2851–2865. https://doi.org/10.1007/s11269-016-1329-3

    Article  Google Scholar 

  • Farlin J, Drouet L, Gallé T, Pittois D, Bayerle M, Braun C, Maloszewski P, Vanderborght J, Elsner M, Kies A (2013) Delineating spring recharge areas in a fractured sandstone aquifer (Luxembourg) based on pesticide mass balance. Hydrogeol J 21(4):799–812. https://doi.org/10.1007/s10040-013-0964-5

    Article  Google Scholar 

  • Fernández A, Zavala J, Romero R, Conde AC, Trejo RI (2014) Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación en México y Centroamérica. UNAM-INECC, México

    Google Scholar 

  • Fonseca A, Madrigal H, Núñez C, Calderón H, Moraga G, Gómez A (2019) Evaluación de la amenaza de contaminación al agua subterránea y a áreas de protección a manantiales en las subcuencas Maravilla-Chiz y Quebrada Honda, Cartago, Costa Rica. UNICIENCIA 33:76–97. https://doi.org/10.15359/ru.33-2.6

    Article  Google Scholar 

  • Galleani L, Vigna B, Banzato C, Lo Russo S (2011) Validation of a vulnerability estimator for spring protection areas: the VESPA index. J Hydrol 3(4):233–245. https://doi.org/10.1016/j.jhydrol.2010.11.012

    Article  Google Scholar 

  • Glazier DS (2014) Springs. Ref Modul Earth Syst Environ Sci. https://doi.org/10.1016/b978-0-12-409548-9.09322-2

    Article  Google Scholar 

  • Guerrero-Morales J, Fonseca-Ortiz Carlos R, Goméz-Albores Miguel A, Sampedro-Rosas María L, Silva-Gómez Sonia E (2020) Proportional variation of potential groundwater. Land 9:1–22. https://doi.org/10.3390/land9100364

    Article  Google Scholar 

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112. https://doi.org/10.1016/j.apgeog.2015.06.015

    Article  Google Scholar 

  • Haque M, Rahman A, Hagare D, Kibria G (2014) Probabilistic water demand forecasting using projected climatic data for blue mountains water supply system in Australia. Water Resour Manag 28(7):1959–1971. https://doi.org/10.1007/s11269-014-0587-1

    Article  Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of hargreaves evapotranspiration equation. J Irrig Drainage Eng 129(1)53–63. https://doi.org/10.1061/(asce)0733-9437(2003)129:1(53)

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99. https://doi.org/10.13031/2013.26773}

    Article  Google Scholar 

  • IFOMEGEM (2014) Carta Geológica del Estado de México escala 1:250,000. Instituto de Fomento Minero y Estudios Geológicos del Estado de México, Juriquilla

    Google Scholar 

  • INECC (2017) Escenarios de cambio climático. México: Instituto Nacional de Ecología y Cambio Climático. Obtenido de https://www.gob.mx/inecc/acciones-y-programas/escenarios-de-cambio-climatico-80126

  • IPCC (2007) Cuarto informe de evaluación del IPCC: El cambio climático 2007: Impactos, adaptación y vulnerabilidad: Grupo de trabajo II. Grupo Intergubernamental de Expertos sobre el Cambio Climático

  • IPCC (2013) Quinto Informe del IPCC. Cambio Climático 2013: Bases Físicas. Guía Resumida. Grupo de Trabajo 1. Bélgica: Grupo Intergubernamental de Expertos sobre el Cambio Climático. http://www.oscc.gob.es/es/general/salud_cambio_climatico/Nuevos_escenarios_emision_RCPs.htm

  • IPCC (2014) El Quinto Reporte de Evaluación del IPCC: ¿Qué implica para latinoamérica? Grupo Intergubernamental de Expertos sobre el Cambio Climático, Bélgica

    Google Scholar 

  • Janža M (2010) Hydrological modeling in the karst area, Rižana spring catchment Slovenia. Environ Earth Sci 61:909–920. https://doi.org/10.1007/s12665-009-0406-9

    Article  Google Scholar 

  • Javadi S, Moghaddam HK, Roozbahani R (2019) Determining springs protection areas by combining an analytical model and vulnerability index. CATENA 182:104167. https://doi.org/10.1016/j.catena.2019.104167

    Article  Google Scholar 

  • Karami GH, Bagheri R, Rahimi F (2016) Determining the groundwater potential recharge zone and karst springs catchment area: Saldoran region, western Iran. Hydrogeol J 24(8):1981–1992. https://doi.org/10.1007/s10040-016-1458-z

    Article  Google Scholar 

  • Kling H, Fuchs M, Pauli M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277. https://doi.org/10.1016/j.jhydrol.2012.01.011

    Article  Google Scholar 

  • Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs. Engineering, theory, management and sustainability, 1st edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kreye R, Wei M, Reksten D (1996) Defining the source area of water supply springs. Hydrology Branch Ministry of Environment, Lands and Parks, British Columbia

    Google Scholar 

  • López S (2018) Estrategias para la protección de manantiales: propuesta metodológica de acuerdo al entorno físico-social y proyección de escenarios. PhD Dissertation. Universidad Autónoma del Estado de México.

  • López R, Becerril G, Benítez C, Cuevas S (2009) Medio físico biológico y social. En SMA, La diversidad biológica del Estado de México. Estudio del Estado (págs. 49–62). D. F: Secrearía del Medio Ambiente.

  • López S, Expósito JL, Esteller MV, Gómez MA, Franco R, Morales GP (2019) Prioritization to protect springs for public urban water supplies, based on multi-criteria evaluation and GIS (State of Mexico, Mexico). Appl Geogr 107:26–37. https://doi.org/10.1016/j.apgeog.2019.04.005

    Article  Google Scholar 

  • Manzano LR, Gómez MA, Díaz C, Mastachi CA, Ordoñez R, Bâ K, Franco R (2018) Identification of variations in the climatic conditions of the lerma-chapala-santiago watershed by comparative analysis of time series. Adv Meteorol. https://doi.org/10.1155/2018/1098942

    Article  Google Scholar 

  • Marín AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci Total Environ 532:435–446. https://doi.org/10.1016/j.scitotenv.2015.05.029

    Article  Google Scholar 

  • Matheswaran K, Khadka A, Dhaubanjar S, Bharati L, Kumar S, Shrestha S (2019) Delineation of spring recharge zones using environmental isotopes to support climate-resilient interventions in two mountainous catchments in Far-Western Nepal. Hydrogeol J. https://doi.org/10.1007/s10040-019-01973-6

    Article  Google Scholar 

  • Matiaki MC, Siarkos I, Katsifarakis KL (2015) Numerical modeling of groundwater flow to delineate spring protection zones. The case of Krokos aquifer. Greece. Desalin Water Treat 57(25):11572–11581. https://doi.org/10.1080/19443994.2015.1049968

    Article  Google Scholar 

  • Méndez M, Magaña V (2010) Regional aspects of prolonged meteorological droughts over Mexico and central America. J Clim 23(5):1175–1188. https://doi.org/10.1175/2009JCLI3080.1

    Article  Google Scholar 

  • ONU (2017) Escenarios hidrológicos mundiales en el 2050: explorar los futuros alternativos de los recursos hídricos del planeta y su uso en el 2050. Programa Mundial de Evaluación de los Recursos Hídricos, París

    Google Scholar 

  • Park W-B, Ha K (2012) Spring water and water culture on Jeju Island. Ground Water 50(1):159–165. https://doi.org/10.1111/j.1745-6584.2011.00862.x

    Article  Google Scholar 

  • PEDU (2006) Plan Estatal de Desarrollo Urbano. D. F.: Gobierno del Estado de México

  • Peng L, Li Y, Feng H (2017) The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland, China. Sci Rep 7:5458. https://doi.org/10.1038/s41598-017-05660-y

    Article  Google Scholar 

  • Qiao X, Li G, Li Y, Liu K (2015) Influences of heterogeneity on three-dimensional groundwater flow simulation and wellhead protection area delineation in karst groundwater system, Taiyuan City, Northern China. Environ Earth Sci 73(10):6705–6717. https://doi.org/10.1007/s12665-015-4031-5

    Article  Google Scholar 

  • Rawat SS, Rai SP, Jose PG, Kumar P, Raina G (2018) Hydrological evaluation of impact of springshed development programme: case study of four springs from a Himalayan State of India. Hydrol J 40(1–4):76–86

    Google Scholar 

  • Reay D, Sabine C, Smith P, Hymus G (2007) Intergovernmental panel on climate change. Fourth assessment report. Inter-governmental Panel on Climate Change, Geneva, Switzerland. Cambridge University Press, Cambridge; UK. Intergovernmental Panel on Climate Change. Available from: www.ipcc.ch. https://doi.org/10.1038/446727a

  • Santamarta JC (2013) Hidrología y recursos hídricos en islas y terrenos volcánicos. Métodos, técnicas y experiencias en las Islas Canarias, Colegio de Ingenieros de Montes, Madrid, pp 552

  • Seager R, Ting M, Davis M, Cane M, Naik N, Nakamura J, Stahle DW (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmosfera 22(1);1–31

    Google Scholar 

  • SEMARNAT (2005) Proyecto de Norma Oficial Mexicana Proy-Nom-140-Semarnat-2005. Secretaría de Medio Ambiente y Recursos Naturales, México

    Google Scholar 

  • Silva AT, Portela M (2018) Using climate-flood links and CMIP5 projections to assess flood design levels under climate change scenarios: a case study in Southern Brazil. Water Resour Manag 32:4879–4893. https://doi.org/10.1007/s11269-018-2058-6

    Article  Google Scholar 

  • Simms G, Lightman D, De Loë R (2010) Tools and approaches for source water protection in Canada. Governance for Source Water Protection in Canada, Report No. 1. Waterloo, ON: Water Policy and Governance Group American

  • SMN (2015) Base de datos del CLICOM. México: Servicio Meteorológico Nacional. Obtenido de http://clicom-mex.cicese.mx/

  • Stahle DW, Burnette DJ, Diaz JV, Heim RR, Fye FK, Paredes JC, Cleaveland MK (2012) Pacific and Atlantic influences on Mesoamerican climate over the past millennium. Clim Dyn 39(6):1431–1446. https://doi.org/10.1007/s00382-011-1205-z

    Article  Google Scholar 

  • Tikhomirov VV (2016) Hydrogeochemistry: fundamentals and advances. Volume 1: Groundwater Composition and Chemistry. Wiley-Scrivener; 1 ed

  • USEPA (2006) How-to manual: update and enhance your local source water protection assessments Edición Kindle de United States Environmental Protection Agency EPA

  • USGS (2016) Earth Explorer. From United States Geological Survey: https://earthexplorer.usgs.gov/

  • Vester HFM, Lawrence D, Eastman JR, Turner BL, Calmé S, Dickson R, Sangermano F (2007) Land change in the southern Yucatán and Calakmul biosphere reserve: effects on habitat and biodiversity. Ecol Appl 17(4):989–1003. https://doi.org/10.1890/05-1106

    Article  Google Scholar 

  • Vakanjac VR, Stevanović Z, Maran Stevanović A, Vakanjac B, Čokorilo Ilić M (2015) An example of karst catchment delineation for prioritizing the protection of an intact natural area. Environ Earth Sci 74(12):7643–7653. https://doi.org/10.1007/s12665-015-4390-y

    Article  Google Scholar 

  • Widyastuti M, Riyanto IA, Naufal M, Ramadhan F, Rahmawati N (2019) Groundwater management based on vulnerability to contamination in the tropical karst region of Guntur Spring, Gunungsewu Karst, Java Island, Indonesia. IOP Conf Ser: Earth Environ Sci 256 012008. doi:https://doi.org/10.1088/1755-1315/256/1/012008

Download references

Acknowledgements

This work was conducted with the support of a grant provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Optional.

Corresponding author

Correspondence to José L. Expósito Castillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, S.L., Castillo, J.L.E., Alberich, M.V.E. et al. Delineation of protection zones for springs in fractured volcanic media considering land use and climate change scenarios in central Mexico region. Environ Earth Sci 80, 366 (2021). https://doi.org/10.1007/s12665-021-09662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09662-y

Keywords

Navigation