Skip to main content
Log in

Development of differently determined and differently targeted Cave Environment Protection Perimeters using hydrogeological basis

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Conserving a cave with important historical and archeological artifacts needs protection measures. Cave Environment Protection Perimeters (CEPP) operational framework is proposed as a conservation measure tool for the cave and its environment. In this study, Cussac Cave was examined. Water infiltration is the main identified threat as it can bring pollutants into the cave. Three nested CEPP zones were then identified covering three important resource safeguarding intentions. First is on determining the possible water path infiltration through fractures from surface to cave (CEPP 1). Second is on delineating watershed of water that can infiltrate above the cave after run-off (CEPP 2). And third is on determining the limits that can constrain groundwater circulation (CEPP 3). According to the objective, the CEPP were obtained using a combination of classical tools such as geomorphology, topography, hydrological parameters (water flow and chemistry), and artificial tracing. The immediate CEPP 1 is close and is small in size (0.5 km2) which can be prone to both chronic and acute pollution through direct infiltration above the cave. The hydrologic CEPP 2 is medium size (1.1 km2) which can entail risks concerning chronic and acute pollution that can be brought by surface run-off before infiltration. The hydrogeologic CEPP 3 is the largest of the three (3.9 km2). Recommendations in each zone on how to manage the cave environment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

modified from Schoeller-Berkaloff Diagram projection)

Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achu AL, Reghunath R, Thomas J (2019) Mapping of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Earth Syst Environ. https://doi.org/10.1007/s41748-019-00138-5

    Article  Google Scholar 

  • Álvarez I, Bodego A, Aranburu A, Arriolabengoa M, Del Val M, Iriarte E, Abendaño V, Calvo JI, Maidagan DG, Hermoso de Mendoza A, Ibarra F, Legarrea J, Sagarna JT, Mauleon J (2018) Geological risk assessment for rock art protection in karstic caves (Alkerdi Caves, Navarre, Spain). J Cult Herit 33:170–180

    Article  Google Scholar 

  • Angulo B, Morales T, Uriarte JA, Antigüedad I (2013) Implementing a comprehensive approach for evaluating significance and disturbance in protected karst areas to guide management strategies. J Environ Manage 130:386–396

    Article  Google Scholar 

  • Aujoulat N, Geneste J-M, Archambeau CH, Barraud D, Delluc M, Duday H, Gambier D (2001) La grotte ornée de Cussac [The Decorated Cave of Cussac]. Int Newsl Rock Art Res INORA 30:3–9

    Google Scholar 

  • Auler AS (2016) Cave protection as a karst conservation tool in the environmentally sensitive Lagoa Santa karst, southeastern Brazil. Acta Carsologica 45:131–145

    Article  Google Scholar 

  • Bourges F, Genthon P, Genty D, Lorblanchet M, Mauduit E, D’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves. Sci Total Environ 493:79–91

    Article  Google Scholar 

  • Delluc M (2000) La grotte de Cussac. Commune du Buisson-de-Cadouin (24). Speleo-Dordogne 156:19–24

    Google Scholar 

  • Elez J, Cuezva S, Fernandez-Cortes A, Garcia-Anton E, Benavente D, Cañaveras C, Sanchez-Moral S (2013) A GIS-based methodology to quantitatively de fi ne an adjacent protected area in a shallow karst cavity: the case of Altamira cave. J Environ Manage 118:122–134

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology, 7th edn. Wiley, p 572. ISBN: 978-470-84997-2

  • Fourment N, Barraud D, Kazmierczak M, Rieu A (2012) La grotte de Cussac (Le Buisson-de-Cadouin, Dordogne, France): applications des principes de conservation préventive au cas d’une découverte récente - In Clottes, J. (Ed.), L’art Pléistocène Dans Le Monde/Pleistocene Art of the World, IFRAO congress proceedings (Tarascon-Sur-Ariège, september 2010), Préhistoire, Art et Sociétés, LXV-LXVI 2010–11:64–65

  • Gutierrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Harley GL, Polk JS, North LA, Reeder PP (2011) Application of a cave inventory system to stimulate development of management strategies: the case of west-central Florida, USA. J Environ Manage 92:2547–2557

    Article  Google Scholar 

  • Iriarte E, Sánchez MA, Foyo A, Tomillo C (2010) Geological risk assessment for cultural heritage conservation in karstic caves. J Cult Herit 11:250–258

    Article  Google Scholar 

  • Jaubert J, Aujoulat N, Courtaud P, Deguilloux MF, Delluc M, Denis A, Duday H, Dutailly B, Ferrier C, Feruglio V, Fourment N, Geneste JM, Genty D, Goutas N, Henry-Gambier D, Kervazo B, Klaric L, Lastennet R, Lévêque F, Malaurent P, Mallye JB, Mora P, Pemonge MH, Peyraube N, Peyroux M, Plisson H, Portais JC, Valladas H, Vergnieux R, Villotte S (2012) Le projet collectif de recherche « Grotte de Cussac » (Dordogne, France): étude d’une cavité ornée à vestiges humains du Gravettien. Symposium de l’art pariétal en Europe, Tarason

  • Jaubert J, Genty D, Valladas H, Camus H, Courtaud P, Ferrier C, Feruglio V, Fourment N, Konik S, Villotte S, Bourdier C, Costamagno S, Delluc M, Goutas N, Katnecker É, Klaric L, Langlais M, Ledoux L, Maksud F, O’Farrell M, Mallye J-B, Pierre M, Pons-Branchu E, Régnier É, Théry-Parisot I (2017) The chronology of human and animal presence in the decorated and sepulchral cave of Cussac (France). Quat Int 432:5–24

    Article  Google Scholar 

  • Jurado V, Porca E, Cuezva S, Fernandez-Cortes A, Sanchez-Moral S, Saiz-Jimenez C (2010) Fungal outbreak in a show cave. Sci Total Environ 408:3632–3638

    Article  Google Scholar 

  • Kadhem GM, Zubari WK (2020) Identifying optimal locations for artificial groundwater recharge by rainfall in the Kingdom of Bahrain. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00178-2

    Article  Google Scholar 

  • Karnay G, Aujoulat N, Konik S, Mauroux B, Pluchery E, Turq A (1999) Note on the geological map of Le BUGUE, BRGM map n°807, 91p.

  • Liñán C, Del Rosal Y, Carrasco F, Vadillo I, Benavente J, Ojeda L (2018) Highlighting the importance of transitional ventilation regimes in the management of Mediterranean show caves (Nerja-Pintada system, southern Spain). Sci Total Environ 631:1268–1278

    Article  Google Scholar 

  • Lopez B (2009) Les processus de transfert d'eau et de dioxyde de carbone dans l'épikarst, thèse, université de Bordeaux I, 372p.

  • Maillet E (1905) Essais d’hydraulique souterraine et fluviale (underground and River Hydrology). Hermann, Paris, p 218

    Google Scholar 

  • Marín AI, Andreo B, Jimenez-Sanchez M, Dominguez-Cuesta MJ, Melendez-Asensio M (2012) Delineating protection areas for caves using contamination vulnerability mapping techniques: the case of Herrerı´as Cave Asturias, Spain. J Cave Karst Stud 74:103–115

    Article  Google Scholar 

  • Masoud M (2020) Groundwater resources management of management of the shallow groundwater aquifer in the desert fringes of EL Beheira Governorate Egypt. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00148-8

    Article  Google Scholar 

  • Nahin KTK, Basak R, Alam R (2019) Groundwater vulnerability assessment with drastic index method in the salinity-affected southwest coastal region of Bangladesh: a case study in Bagerhat Sadar, Fakirhat and Rampal. Earth Syst Environ. https://doi.org/10.1007/s41748-019-00144-7

    Article  Google Scholar 

  • Nwankwo CB, Hoque MA, Islam MA, Dewan A (2020) Groundwater constituents and trace elements in the basement aquifers of africa and sedimentary aquifers of Asia: medical hydrogeology of drinking water minerals and toxicants. Earth Syst Environ. https://doi.org/10.1007/s41748-020-00151-z

    Article  Google Scholar 

  • Peyraube N., 2011, Apports des équilibres calco-carboniques et du carbone 13 pour l’étude de l’air et des écoulements d’eau dans la zone non saturée du karst. Ph. D. Thesis, Bordeaux University.

  • Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the Pco2-SIc relationship. J Hydrol 431:13–24

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Villanueva JD, Houillon N, Malaurent P, Denis A (2017) Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using co2 assessment. Theor Appl Climatol 129:1045–1058

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Minvielle S, Houillon N, Lorette G, Malaurent P, Denimal S, Bertrand C, Binet S, Emblanch C, Naessens F, Asmael N, Villanueva JD (2019) SIc–Abacus: an in–situ tool for estimating SIc and Pco2 in the context of carbonate karst. J Hydrol 568:891–903

    Article  Google Scholar 

  • Ravbar N, Šebela S (2015) The effectiveness of protection policies and legislative framework with special regard to karst landscapes: insights from Slovenia. Environ Sci Policies 51:106–116

    Article  Google Scholar 

  • Russell MJ, MacLean VL (2008) Management issues in a Tasmanian tourist cave: potential microclimatic impacts of cave modifications. J Environ Manage 87:474–483

    Article  Google Scholar 

  • Sainz C, Rábago D, Celaya S, Fernández E, Quindós J, Quindós L, Fernández A, Fuente I, Arteche JL, Quindós LS (2018) Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of Altamira (Cantabria, Spain). Sci Total Environ 624:416–423

    Article  Google Scholar 

  • Sánchez MA, Foyo A, Tomillo C, Iriarte E (2007) Geological risk assessment of the area surrounding Altamira Cave: a proposed natural risk index and safety factor for protection of prehistoric caves. Eng Geol 94:180–200

    Article  Google Scholar 

  • Schoeller H (1962) Les eaux souterraines. Editions Masson, Paris, p 642

    Google Scholar 

  • Schoeller M (1963) Recherches sur l’acquisition de la composition chimique des eaux souterraines. Drouillard ed, Bordeaux, p 231 (ASIN: B0014PJ9AM)

    Google Scholar 

  • Shen J (1981) Discharge characteristics of triangular-notch thin-plate Weirs. In: Geological survey water-supply paper 1617-B

  • Van Beynen PE, Bialkowska-Jelinska E (2012) Human disturbance of the Waitomo catchment, New Zealand. J Environ Manage 108:130–140

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the DRAC Aquitaine, the DREAL and the FEDER fund for helping this research. We thank C. Archambaud, J.B. Desbrunais, J.C Portais and P. Buraud for their help in and around the cave of Cussac. Cussac site is part of the SNO-Karst.

Funding

This work was supported by the French Ministry of Culture and Ministry of Ecology (DRAC Aquitaine and DREAL) and European FEDER fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peyraube.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyraube, N., Lastennet, R., Villanueva, J.D. et al. Development of differently determined and differently targeted Cave Environment Protection Perimeters using hydrogeological basis. Environ Earth Sci 80, 393 (2021). https://doi.org/10.1007/s12665-021-09672-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09672-w

Keywords

Navigation