Skip to main content

Advertisement

Log in

DualSPHysics: from fluid dynamics to multiphysics problems

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

DualSPHysics is a weakly compressible smoothed particle hydrodynamics (SPH) Navier–Stokes solver initially conceived to deal with coastal engineering problems, especially those related to wave impact with coastal structures. Since the first release back in 2011, DualSPHysics has shown to be robust and accurate for simulating extreme wave events along with a continuous improvement in efficiency thanks to the exploitation of hardware such as graphics processing units for scientific computing or the coupling with wave propagating models such as SWASH and OceanWave3D. Numerous additional functionalities have also been included in the DualSPHysics package over the last few years which allow the simulation of fluid-driven objects. The use of the discrete element method has allowed the solver to simulate the interaction among different bodies (sliding rocks, for example), which provides a unique tool to analyse debris flows. In addition, the recent coupling with other solvers like Project Chrono or MoorDyn has been a milestone in the development of the solver. Project Chrono allows the simulation of articulated structures with joints, hinges, sliders and springs and MoorDyn allows simulating moored structures. Both functionalities make DualSPHysics especially suited for the simulation of offshore energy harvesting devices. Lately, the present state of maturity of the solver goes beyond single-phase simulations, allowing multi-phase simulations with gas–liquid and a combination of Newtonian and non-Newtonian models expanding further the capabilities and range of applications for the DualSPHysics solver. These advances and functionalities make DualSPHysics an advanced meshless solver with emphasis on free-surface flow modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Shadloo MS, Oger G, Le Touzé D (2016) Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges. Comput Fluids 136:11–34. https://doi.org/10.1016/j.compfluid.2016.05.029

    Article  MathSciNet  MATH  Google Scholar 

  2. Gotoh H, Khayyer A (2018) On the state-of-the-art of particle methods for coastal and ocean engineering. Coast Eng J 60:79–103. https://doi.org/10.1080/21664250.2018.1436243

    Article  Google Scholar 

  3. Mogan SRC, Chen D, Hartwig JW et al (2018) Hydrodynamic analysis and optimization of the Titan submarine via the SPH and Finite-Volume methods. Comput Fluids. https://doi.org/10.1016/j.compfluid.2018.08.014

    Article  MathSciNet  MATH  Google Scholar 

  4. Manenti W, Domínguez, et al (2019) SPH modeling of water-related natural hazards. Water 11:1875. https://doi.org/10.3390/w11091875

    Article  Google Scholar 

  5. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54:1–26. https://doi.org/10.1080/00221686.2015.1119209

    Article  Google Scholar 

  6. Vacondio R, Altomare C, De Leffe M, et al (2020) Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Comput Part Mech

  7. Oger G, Le Touzé D, Guibert D et al (2016) On distributed memory MPI-based parallelization of SPH codes in massive HPC context. Comput Phys Commun 200:1–14. https://doi.org/10.1016/j.cpc.2015.08.021

    Article  MathSciNet  Google Scholar 

  8. Yeylaghi S, Moa B, Oshkai P et al (2017) ISPH modelling for hydrodynamic applications using a new MPI-based parallel approach. J Ocean Eng Mar Energy 3:35–50. https://doi.org/10.1007/s40722-016-0070-6

    Article  Google Scholar 

  9. Guo X, Rogers BD, Lind S, Stansby PK (2018) New massively parallel scheme for incompressible smoothed particle hydrodynamics (ISPH) for highly nonlinear and distorted flow. Comput Phys Commun 233:16–28. https://doi.org/10.1016/j.cpc.2018.06.006

    Article  MathSciNet  Google Scholar 

  10. Hérault A, Bilotta G, Dalrymple RA (2010) SPH on GPU with CUDA. J Hydraul Res 48:74–79. https://doi.org/10.1080/00221686.2010.9641247

    Article  Google Scholar 

  11. Ramachandran P (2016) PySPH: a reproducible and high-performance framework for smoothed particle hydrodynamics. In: Proceedings of the 3rd international conference on particle-based methods (particles 2013). Stuttgart, pp 122–129

  12. Cercos-Pita JL (2015) AQUAgpusph, a new free 3D SPH solver accelerated with OpenCL. Comput Phys Commun. https://doi.org/10.1016/j.cpc.2015.01.026

    Article  MathSciNet  MATH  Google Scholar 

  13. Domínguez JM, Crespo AJC, Gómez-Gesteira M, Marongiu JC (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67:2026–2042. https://doi.org/10.1002/fld.2481

    Article  MathSciNet  MATH  Google Scholar 

  14. Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184:617–627. https://doi.org/10.1016/j.cpc.2012.10.015

    Article  Google Scholar 

  15. Domínguez JM, Crespo AJC, Valdez-Balderas D et al (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184:1848–1860. https://doi.org/10.1016/j.cpc.2013.03.008

    Article  Google Scholar 

  16. Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc. https://doi.org/10.1111/j.1365-2966.2012.21439.x

    Article  Google Scholar 

  17. Liu MB, Liu GR, Lam KY (2003) Constructing smoothing functions in smoothed particle hydrodynamics with applications. J Comput Appl Math 155:263–284. https://doi.org/10.1016/S0377-0427(02)00869-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  19. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396. https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  20. Robinson MJ (2010) Turbulence and viscous mixing using smoothed particle hydrodynamics. Monash University, Clayton

    Google Scholar 

  21. Monaghan JJ (2005) Smoothed particle hydrodynamics. Reports Prog Phys 68:1703–1759. https://doi.org/10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  22. Violeau D (2012) Fluid mechanics and the SPH method. Oxford University Press, Oxford

    Book  Google Scholar 

  23. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006

    Article  MathSciNet  Google Scholar 

  24. Bonet J, Lok T-SL (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180:97–115. https://doi.org/10.1016/S0045-7825(99)00051-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  26. Fourtakas G, Dominguez JM, Vacondio R, Rogers BD (2019) Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Comput Fluids 190:346–361. https://doi.org/10.1016/j.compfluid.2019.06.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Monaghan J, Gingold R (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389. https://doi.org/10.1016/0021-9991(83)90036-0

    Article  MATH  Google Scholar 

  28. Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705. https://doi.org/10.1103/PhysRevE.67.026705

    Article  Google Scholar 

  29. Y.M. Lo E, Shao S, (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24:275–286. https://doi.org/10.1016/S0141-1187(03)00002-6

    Article  Google Scholar 

  30. Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D (2011) Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Phys Rev E Stat Nonlinear Soft Matter Phys. https://doi.org/10.1103/PhysRevE.84.026705

    Article  Google Scholar 

  31. Gotoh H, Shibahara T, Sakai T (2001) Sub-particle-scale Turbulence Model for the MPS Method: Lagrangian flow model for hydraulic engineering. Adv Methods Comput Fluid Dyn 339–347

  32. Dalrymple RA, Rogers BD (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53:141–147. https://doi.org/10.1016/j.coastaleng.2005.10.004

    Article  Google Scholar 

  33. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  34. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Verlet L (1967) Computer ‘experiments’ on classical fluids. I. thermodynamical properties of lennard-jones molecules. Phys Rev 159:98–103. https://doi.org/10.1103/PhysRev.159.98

    Article  Google Scholar 

  36. Leimkuhler B, Matthews C (2015) Introduction. In: Molecular dynamics: with deterministic and stochastic numerical methods. pp 1–51

  37. Parshikov AN, Medin SA, Loukashenko II, Milekhin VA (2000) Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. Int J Impact Eng 24:779–796. https://doi.org/10.1016/S0734-743X(99)00168-2

    Article  Google Scholar 

  38. Monaghan JJ, Kos A (1999) Solitary waves on a cretan beach. J Waterw Port Coast Ocean Eng 125:145–155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

    Article  Google Scholar 

  39. Altomare C, Crespo AJC, Rogers BD et al (2014) Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics. Comput Struct 130:34–45. https://doi.org/10.1016/j.compstruc.2013.10.011

    Article  Google Scholar 

  40. Zhang F, Crespo A, Altomare C et al (2018) DualSPHysics: a numerical tool to simulate real breakwaters. J Hydrodyn 30:95–105. https://doi.org/10.1007/s42241-018-0010-0

    Article  Google Scholar 

  41. English A, Domínguez JM, Vacondio R, et al Modified dynamic boundary conditions (mDBC) for general purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00403-3

  42. Crespo AJC, Gómez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Contin 5:173–184. https://doi.org/10.3970/cmc.2007.005.173

    Article  MathSciNet  MATH  Google Scholar 

  43. Marrone S, Antuono M, Colagrossi A et al (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542. https://doi.org/10.1016/j.cma.2010.12.016

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56:19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  45. Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231:1499–1523. https://doi.org/10.1016/j.jcp.2011.10.027

    Article  MathSciNet  MATH  Google Scholar 

  46. Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body–water slam and efficient wave–body interaction. Comput Methods Appl Mech Eng 265:163–173. https://doi.org/10.1016/j.cma.2013.05.017

    Article  MathSciNet  MATH  Google Scholar 

  47. Altomare C, Domínguez JM, Crespo AJC et al (2017) Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coast Eng 127:37–54. https://doi.org/10.1016/j.coastaleng.2017.06.004

    Article  Google Scholar 

  48. Domínguez JM, Altomare C, Gonzalez-Cao J, Lomonaco P (2019) Towards a more complete tool for coastal engineering: solitary wave generation, propagation and breaking in an SPH-based model. Coast Eng J 61:15–40. https://doi.org/10.1080/21664250.2018.1560682

    Article  Google Scholar 

  49. Biesel F, Suquet F (1951) Etude theorique d’un type d’appareil a la houle. La Houille Blanche 2:157–160

    Google Scholar 

  50. Hughes SA (1993) Physical models and laboratory techniques in coastal engineering, Advanced S. World Scientific

  51. Liu Z, Frigaards P (2001) Generation and analysis of random waves. Aalborg Universitet, Denmark

    Google Scholar 

  52. Hansen EON, Sorensen T, Gravesen H, et al (1981) Correct reproduction of group-induced long waves. In: Proceedings seventeenth coast engineering conference. Sydney, Australia March 23–28 (1980)

  53. Barthel V, Mansard EPD, Sand SE, Vis FC (1983) Group bounded long waves in physical models. Ocean Eng 10:261–294. https://doi.org/10.1016/0029-8018(83)90012-4

    Article  Google Scholar 

  54. Goring DG (1978) Tsunamis: the propagation of long waves onto a shelf. Calif Inst Technol W M Keck Lab Hydraul Water Resour Rep KH-R

  55. Schäffer HA, Klopman G (2000) Review of multidirectional active wave absorption methods. J Waterw Port Coast Ocean Eng. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:2(88)

    Article  Google Scholar 

  56. Monaghan JJ, Kos A, Issa N (2003) Fluid motion generated by impact. J Waterw Port Coast Ocean Eng. https://doi.org/10.1061/(ASCE)0733-950X(2003)129:6(250)

    Article  Google Scholar 

  57. Ferrand M, Joly A, Kassiotis C et al (2017) Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D. Comput Phys Commun 210:29–44. https://doi.org/10.1016/j.cpc.2016.09.009

    Article  MathSciNet  MATH  Google Scholar 

  58. Leroy A, Violeau D, Ferrand M, Kassiotis C (2014) Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH. J Comput Phys. https://doi.org/10.1016/j.jcp.2013.12.035

    Article  MathSciNet  MATH  Google Scholar 

  59. Leroy A, Violeau D, Ferrand M et al (2016) A new open boundary formulation for incompressible SPH. Comput Math with Appl 72:2417–2432. https://doi.org/10.1016/j.camwa.2016.09.008

    Article  MathSciNet  MATH  Google Scholar 

  60. Hirschler M, Kunz P, Huber M et al (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633. https://doi.org/10.1016/j.jcp.2015.12.024

    Article  MathSciNet  MATH  Google Scholar 

  61. Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Methods Fluids 61:709–724. https://doi.org/10.1002/fld.1971

    Article  MathSciNet  MATH  Google Scholar 

  62. Federico I, Marrone S, Colagrossi A et al (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46. https://doi.org/10.1016/j.euromechflu.2012.02.002

    Article  MathSciNet  MATH  Google Scholar 

  63. Vacondio R, Rogers BD, Stansby PK, Mignosa P (2012) SPH Modeling of shallow flow with open boundaries for practical flood simulation. J Hydraul Eng 138:530–541. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543

    Article  Google Scholar 

  64. Khorasanizade S, Sousa JMM (2016) An innovative open boundary treatment for incompressible SPH. Int J Numer Methods Fluids 80:161–180. https://doi.org/10.1002/fld.4074

    Article  MathSciNet  Google Scholar 

  65. Tafuni A, Domínguez JM, Vacondio R, Crespo A (2017) Accurate and efficient SPH open boundary conditions for real 3-D engineering problems. Proc SPHERIC 2017:346–354

    Google Scholar 

  66. Tafuni A, Domínguez JM, Vacondio R, Crespo AJC (2018) A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models. Comput Methods Appl Mech Eng 342:604–624. https://doi.org/10.1016/j.cma.2018.08.004

    Article  MathSciNet  MATH  Google Scholar 

  67. Verbrugghe T, Domínguez JM, Altomare C et al (2019) Non-linear wave generation and absorption using open boundaries within DualSPHysics. Comput Phys Commun 240:46–59. https://doi.org/10.1016/j.cpc.2019.02.003

    Article  Google Scholar 

  68. Mokos A, Rogers BD, Stansby PK (2017) A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. J Hydraul Res 55:143–162. https://doi.org/10.1080/00221686.2016.1212944

    Article  Google Scholar 

  69. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62:4968–4975. https://doi.org/10.1103/PhysRevE.62.4968

    Article  Google Scholar 

  70. Mokos A, Rogers BD, Stansby PK, Domínguez JM (2015) Multi-phase SPH modelling of violent hydrodynamics on GPUs. Comput Phys Commun 196:304–316. https://doi.org/10.1016/j.cpc.2015.06.020

    Article  Google Scholar 

  71. Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191:448–475. https://doi.org/10.1016/S0021-9991(03)00324-3

    Article  MATH  Google Scholar 

  72. Brackbill J, Kothe D, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  73. Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861. https://doi.org/10.1016/j.jcp.2005.09.001

    Article  MathSciNet  MATH  Google Scholar 

  74. Lafaurie B, Nardone C, Scardovelli R et al (1994) Modelling merging and fragmentation in multiphase flows with SURFER. J Comput Phys 113:134–147. https://doi.org/10.1006/jcph.1994.1123

    Article  MathSciNet  MATH  Google Scholar 

  75. Wu J, Yu S-T, Jiang B-N (1998) Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model. Int J Numer Methods Eng 42:583–600. https://doi.org/10.1002/(SICI)1097-0207(19980630)42:4%3c583::AID-NME341%3e3.0.CO;2-M

    Article  MATH  Google Scholar 

  76. Papanastasiou TC (1987) Flows of materials with yield. J Rheol (N Y N Y) 31:385–404. https://doi.org/10.1122/1.549926

    Article  MATH  Google Scholar 

  77. Mitsoulis E (2007) Flows of viscoplastic materials: models and computations. Rheol Rev: 135–178

  78. Fourtakas G, Rogers BD (2016) Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using smoothed particle hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Adv Water Resour 92:186–199. https://doi.org/10.1016/j.advwatres.2016.04.009

    Article  Google Scholar 

  79. Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136:214–226. https://doi.org/10.1006/jcph.1997.5776

    Article  MATH  Google Scholar 

  80. St-Germain P, Nistor I, Townsend R, Shibayama T (2014) Smoothed-particle hydrodynamics numerical modeling of structures impacted by tsunami bores. J Waterw Port Coastal Ocean Eng 140:66–81. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000225

    Article  Google Scholar 

  81. Zijlema M, Stelling G, Smit P (2011) SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast Eng 58:992–1012. https://doi.org/10.1016/j.coastaleng.2011.05.015

    Article  Google Scholar 

  82. Altomare C, Domínguez JM, Crespo AJC et al (2015) Hybridization of the wave propagation model swash and the meshfree particle method SPH for real coastal applications. Coast Eng J 57:1550024–1–1550024–34. https://doi.org/10.1142/S0578563415500242

    Article  Google Scholar 

  83. Engsig-Karup AP, Bingham HB, Lindberg O (2009) An efficient flexible-order model for 3D nonlinear water waves. J Comput Phys 228:2100–2118. https://doi.org/10.1016/j.jcp.2008.11.028

    Article  MathSciNet  MATH  Google Scholar 

  84. Verbrugghe T, Domínguez JM, Crespo AJC et al (2018) Coupling methodology for smoothed particle hydrodynamics modelling of non-linear wave-structure interactions. Coast Eng 138:184–198. https://doi.org/10.1016/j.coastaleng.2018.04.021

    Article  Google Scholar 

  85. Altomare C, Tagliafierro B, Dominguez JM et al (2018) Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl Ocean Res 81:15–33. https://doi.org/10.1016/j.apor.2018.09.013

    Article  Google Scholar 

  86. Verbrugghe T, Stratigaki V, Altomare C et al (2019) Implementation of open boundaries within a two-way coupled SPH model to simulate nonlinear wave-structure interactions. Energies 12:697. https://doi.org/10.3390/en12040697

    Article  Google Scholar 

  87. Canelas RB, Crespo AJC, Domínguez JM et al (2016) SPH–DCDEM model for arbitrary geometries in free surface solid–fluid flows. Comput Phys Commun 202:131–140. https://doi.org/10.1016/j.cpc.2016.01.006

    Article  MathSciNet  Google Scholar 

  88. Cummins SJ, Cleary PW (2011) Using distributed contacts in DEM. Appl Math Model 35:1904–1914. https://doi.org/10.1016/j.apm.2010.10.019

    Article  MATH  Google Scholar 

  89. Brilliantov N V., Pöschel T (2001) Granular gases with impact-velocity-dependent restitution coefficient. In: Granular gases. Springer, pp 100–124

  90. Tasora A, Anitescu M (2011) A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput Methods Appl Mech Eng 200:439–453. https://doi.org/10.1016/j.cma.2010.06.030

    Article  MathSciNet  MATH  Google Scholar 

  91. Canelas RB, Brito M, Feal OG et al (2018) Extending DualSPHysics with a differential variational inequality: modeling fluid-mechanism interaction. Appl Ocean Res 76:88–97. https://doi.org/10.1016/j.apor.2018.04.015

    Article  Google Scholar 

  92. Hall M (2018) MoorDyn user’s guide

  93. Domínguez JM, Crespo AJC, Hall M et al (2019) SPH simulation of floating structures with moorings. Coast Eng 153:103560. https://doi.org/10.1016/j.coastaleng.2019.103560

    Article  Google Scholar 

  94. Viccione G, Bovolin V, Carratelli EP (2008) Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations. Int J Numer Methods Fluids 58:625–638. https://doi.org/10.1002/fld.1761

    Article  MATH  Google Scholar 

  95. Winkler D, Rezavand M, Rauch W (2018) Neighbour lists for smoothed particle hydrodynamics on GPUs. Comput Phys Commun 225:140–148. https://doi.org/10.1016/j.cpc.2017.12.014

    Article  Google Scholar 

  96. Crespo AJC, Domínguez JM, Rogers BD et al (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  97. Domínguez JM, Crespo AJC, Barreiro A, et al (2014) Efficient implementation of double precision in GPU computing to simulate realistic cases with high resolution. In: Proceedings of the 9th SPHERIC international workshop, pp 140–145

  98. Kleefsman KMT, Fekken G, Veldman AEP et al (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206:363–393. https://doi.org/10.1016/j.jcp.2004.12.007

    Article  MathSciNet  MATH  Google Scholar 

  99. Crespo AC, Dominguez JM, Barreiro A et al (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE 6:e20685. https://doi.org/10.1371/journal.pone.0020685

    Article  Google Scholar 

  100. Valdez-Balderas D, Domínguez JM, Rogers BD, Crespo AJC (2013) Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. J Parallel Distrib Comput 73:1483–1493. https://doi.org/10.1016/j.jpdc.2012.07.010

    Article  Google Scholar 

  101. Altomare C, Crespo AJC, Domínguez JM et al (2015) Applicability of smoothed particle hydrodynamics for estimation of sea wave impact on coastal structures. Coast Eng 96:1–12. https://doi.org/10.1016/j.coastaleng.2014.11.001

    Article  Google Scholar 

  102. Pringgana G, Cunningham LS, Rogers BD (2016) Modelling of tsunami-induced bore and structure interaction. Proc Inst Civ Eng - Eng Comput Mech 169:109–125. https://doi.org/10.1680/jencm.15.00020

    Article  Google Scholar 

  103. González-Cao J, Altomare C, Crespo AJC et al (2019) On the accuracy of DualSPHysics to assess violent collisions with coastal structures. Comput Fluids 179:604–612. https://doi.org/10.1016/j.compfluid.2018.11.021

    Article  MathSciNet  MATH  Google Scholar 

  104. Rota Roselli RA, Vernengo G, Altomare C et al (2018) Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods. Environ Model Softw 103:62–73. https://doi.org/10.1016/j.envsoft.2018.02.003

    Article  Google Scholar 

  105. Lowe RJ, Buckley ML, Altomare C et al (2019) Numerical simulations of surf zone wave dynamics using smoothed particle hydrodynamics. Ocean Model 144:101481. https://doi.org/10.1016/j.ocemod.2019.101481

    Article  Google Scholar 

  106. Subramaniam SP, Scheres B, Schilling M et al (2019) Influence of convex and concave curvatures in a coastal dike line on wave run-up. Water 11:1333. https://doi.org/10.3390/w11071333

    Article  Google Scholar 

  107. Altomare C, Tafuni A, Domínguez JM et al (2020) SPH simulations of real sea waves impacting a large-scale structure. J Mar Sci Eng. https://doi.org/10.3390/jmse8100826

    Article  Google Scholar 

  108. Canelas RB, Domínguez JM, Crespo AJC et al (2015) A smooth particle hydrodynamics discretization for the modelling of free surface flows and rigid body dynamics. Int J Numer Methods Fluids 78:581–593. https://doi.org/10.1002/fld.4031

    Article  MathSciNet  Google Scholar 

  109. Canelas RB, Domínguez JM, Crespo AJC et al (2017) Resolved simulation of a granular-fluid flow with a coupled SPH-DCDEM model. J Hydraul Eng 143:06017012. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001331

    Article  Google Scholar 

  110. Ropero-Giralda P, Crespo AJC, Tagliafierro B et al (2020) Efficiency and survivability analysis of a point-absorber wave energy converter using DualSPHysics. Renew Energy. https://doi.org/10.1016/j.renene.2020.10.012

    Article  Google Scholar 

  111. Gómez-Gesteira M, González-Cao J, Altomare C et al (2017) Towards simulating floating offshore oscillating water column converters with smoothed particle hydrodynamics. Coast Eng 126:11–26. https://doi.org/10.1016/j.coastaleng.2017.05.001

    Article  Google Scholar 

  112. Brito M, Canelas RB, García-Feal O et al (2020) A numerical tool for modelling oscillating wave surge converter with nonlinear mechanical constraints. Renew Energy 146:2024–2043. https://doi.org/10.1016/j.renene.2019.08.034

    Article  Google Scholar 

  113. González-Cao J, García-Feal O, Domínguez JM et al (2018) Analysis of the hydrological safety of dams combining two numerical tools: Iber and DualSPHysics. J Hydrodyn 30:87–94. https://doi.org/10.1007/s42241-018-0009-6

    Article  Google Scholar 

  114. Novak G, Tafuni A, Domínguez JM et al (2019) A numerical study of fluid flow in a vertical slot fishway with the smoothed particle hydrodynamics method. Water 11:1928. https://doi.org/10.3390/w11091928

    Article  Google Scholar 

  115. Nóbrega JD, Matos J, Schulz HE, Canelas RB (2020) Smooth and stepped spillway modeling using the SPH method. J Hydraul Eng. https://doi.org/10.1061/(asce)hy.1943-7900.0001776

    Article  Google Scholar 

  116. Zubeldia EH, Fourtakas G, Rogers BD, Farias MM (2018) Multi-phase SPH model for simulation of erosion and scouring by means of the shields and Drucker–Prager criteria. Adv Water Resour 117:98–114. https://doi.org/10.1016/j.advwatres.2018.04.011

    Article  Google Scholar 

  117. Ren B, He M, Dong P, Wen H (2015) Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method. Appl Ocean Res 50:1–12. https://doi.org/10.1016/j.apor.2014.12.003

    Article  Google Scholar 

  118. Chow AD, Rogers BD, Lind SJ, Stansby PK (2018) Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Comput Phys Commun 226:81–103. https://doi.org/10.1016/j.cpc.2018.01.005

    Article  Google Scholar 

  119. Green MD, Peiró J (2018) Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching. Comput Fluids 174:179–199. https://doi.org/10.1016/j.compfluid.2018.07.006

    Article  MathSciNet  MATH  Google Scholar 

  120. Leonardi M, Domínguez JM, Rung T (2019) An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. Eng Anal Bound Elem 106:555–570. https://doi.org/10.1016/j.enganabound.2019.06.001

    Article  MathSciNet  MATH  Google Scholar 

  121. Hosain ML, Domínguez JM, Bel Fdhila R, Kyprianidis K (2019) Smoothed particle hydrodynamics modeling of industrial processes involving heat transfer. Appl Energy 252:113441. https://doi.org/10.1016/j.apenergy.2019.113441

    Article  Google Scholar 

  122. Mayoral-Villa E, Alvarado-Rodríguez CE, Klapp J et al (2016) Smoothed particle hydrodynamics: applications to migration of radionuclides in confined aqueous systems. J Contam Hydrol 187:65–78. https://doi.org/10.1016/j.jconhyd.2016.01.008

    Article  Google Scholar 

  123. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075. https://doi.org/10.1016/j.jcp.2012.05.005

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Ministry of Economy and Competitiveness of the Government of Spain under project “WELCOME ENE2016-75074-C2-1-R” and financed by Xunta de Galicia (Spain) under project ED431C 2017/64 ″Programa de Consolidación e Estructuración de Unidades de Investigación Competitivas (Grupos de Referencia Competitiva)" co-funded by European Regional Development Fund (ERDF). We are grateful for funding from the European Union Horizon 2020 programme under the ENERXICO Project, Grant Agreement No. 828947 and the Mexican CONACYT- SENER Hidrocarburos Grant Agreement No. B-S-69926. Dr. J. M. Domínguez acknowledges funding from Spanish government under the program “Juan de la Cierva-incorporación 2017” (IJCI-2017-32592). Dr. C. Altomare acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No.: 792370.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Domínguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domínguez, J.M., Fourtakas, G., Altomare, C. et al. DualSPHysics: from fluid dynamics to multiphysics problems. Comp. Part. Mech. 9, 867–895 (2022). https://doi.org/10.1007/s40571-021-00404-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00404-2

Keywords

Navigation