Skip to main content

Advertisement

Log in

Improved Pleistocene sediment stratigraphy and paleoenvironmental implications for the western Arctic Ocean off the East Siberian and Chukchi margins

  • Original Article
  • Published:
arktos

Abstract

Sediment cores from the East Siberian and Chukchi margins and adjacent basins are used to refine the upper Pleistocene stratigraphy and better constrain the timing of major glacial advances in the western Arctic Ocean. Cores have been analysed using high-resolution non-destructive physical properties (density, magnetic susceptibility and colour) and X-ray fluorescence elemental measurements (manganese and calcium contents). All analysed cores reveal a spatially coherent stratigraphic pattern that enables robust correlations from the East Siberian margin to the Mendeleev and Northwind Ridges, thus highlighting the potential of such multiproxy approach for improving stratigraphic framework. The distribution of sedimentary units resulting from core correlation indicates decreasing sedimentation rates by more than one order of magnitude from the East Siberian margin east- and northwards, reflecting an increased distance from the main sediment sources, increasing sea-ice cover, and longer residence times in the Beaufort Gyre circulation. The stratigraphy presented, consistent with existing geophysical data, indicates the most recent major glacial advance from the East Siberian margin with ice grounding at water depth > 800 m during estimated Marine Isotope Stages 4/3, roughly contemporaneous with the Middle Weichselian glaciation in northern Eurasia. Earlier glacial events are potentially indicated by glaciogenic units in cores away from the margin, where they are not overprinted by a younger ice advance. Sediment thickness increase towards the Siberian margin also suggests the possibility of a limited MIS 2 glaciation, although no direct evidence for such an ice sheet has been found thus far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Polyak L, Edwards MH, Coakley BJ, Jakobsson M (2001) Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms. Nature 410:453

    Google Scholar 

  2. Polyak L, Darby DA, Bischof JF, Jakobsson M (2007) Stratigraphic constraints on late Pleistocene glacial erosion and deglaciation of the Chukchi margin, Arctic Ocean. Quat Res 67:234–245

    Google Scholar 

  3. Jakobsson M, Polyak L, Edwards M, Kleman J, Coakley B (2008) Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surf Proc Land 33:526–545

    Google Scholar 

  4. Jakobsson M, Nilsson J, O’Regan M, Backman J, Löwemark L, Dowdeswell JA, Mayer L, Polyak L, Colleoni F, Anderson LG, Björk G, Darby D, Eriksson B, Hanslik D, Hell B, Marcussen C, Sellén E, Wallin Å (2010) An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data. Quat Sci Rev 29:3505–3517

    Google Scholar 

  5. Niessen F, Hong JK, Hegewald A, Matthiessen J, Stein R, Kim H, Kim S, Jensen L, Jokat W, Nam S-I, Kang S-H (2013) Repeated Pleistocene glaciation of the East Siberian continental margin. Nat Geosci 6:842–846

    Google Scholar 

  6. Dove D, Polyak L, Coakley B (2014) Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean. Quat Sci Rev 92:112–122

    Google Scholar 

  7. Jakobsson M, Nilsson J, Anderson L, Backman J, Bjork G, Cronin TM, Kirchner N, Koshurnikov A, Mayer L, Noormets R, O’Regan M, Stranne C, Ananiev R, Barrientos Macho N, Cherniykh D, Coxall H, Eriksson B, Floden T, Gemery L, Gustafsson O, Jerram K, Johansson C, Khortov A, Mohammad R, Semiletov I (2016) Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat Commun 7:1–13

    Google Scholar 

  8. O’Regan M, Backman J, Barrientos N, Cronin TM, Gemery L, Kirchner N, Mayer LA, Nilsson J, Noormets R, Pearce C, Semiletov I, Stranne C, Jakobsson M (2017) The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin. Clim Past 13:1269–1284

    Google Scholar 

  9. Polyak L, Bischof J, Ortiz JD, Darby DA, Channell JET, Xuan C, Kaufman DS, Løvlie R, Schneider DA, Eberl DD, Adler RE, Council EA (2009) Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Glob Planet Change 68:5–17

    Google Scholar 

  10. Backman J, Jakobsson M, Løvlie R, Polyak L, Febo LA (2004) Is the central Arctic Ocean a sediment starved basin? Quat Sci Rev 23:1435–1454

    Google Scholar 

  11. Darby DA, Bischof JF, Jones GA (1997) Radiocarbon chronology of depositional regimes in the western Arctic Ocean. Deep Sea Res Part II 44:174–1757

    Google Scholar 

  12. Polyak L, Curry WB, Darby DA, Bischof J, Cronin TM (2004) Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr Palaeoclimatol Palaeoecol 203:73–93

    Google Scholar 

  13. Stein R, Matthiessen J, Niessen F, Krylov A, Nam S, Bazhenova E (2010) Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung 79:97–121

    Google Scholar 

  14. Nowaczyk NR, Frederichs TW, Eisenhauer A, Gard G (1994) Magnetostratigraphic data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: evidence for four geomagnetic polarity events within the last 170 ka of the Brunhes Chron. Geophys J Int 117:453–471

    Google Scholar 

  15. Nowaczyk NR, Antonow M, Knies J, Spielhagen RF (2003) Further rock magnetic and chronostratigraphic results on reversal excursions during the last 50 ka as derived from northern high latitudes and discrepancies in precise AMS14C dating. Geophys J Int 155:1065–1080

    Google Scholar 

  16. Jakobsson M, Løvlie R, Al-Hanbali H, Arnold E, Backman J, Mörth M (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28:23–26

    Google Scholar 

  17. Jakobsson M, Løvlie R, Arnold EM, Backman J, Polyak L, Knutsen JO, Musatov E (2001) Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Glob Planet Change 31:1–22

    Google Scholar 

  18. Jakobsson M, Backman J, Murray A, Løvlie R (2003) Optically stimulated luminescence dating supports central Arctic Ocean cm-scale sedimentation rates. Geochem Geophys Geosyst 4:1–11

    Google Scholar 

  19. Spielhagen RF, Baumann K-H, Erlenkeuser H, Nowaczyk NR, Nørgaard-Pedersen N, Vogt C, Weiel D (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat Sci Rev 23:1455–1483

    Google Scholar 

  20. Channell JET, Xuan C (2009) Self-reversal and apparent magnetic excursions in Arctic sediments. Earth Planet Sci Lett 284:124–131

    Google Scholar 

  21. Xuan C, Channell JET, Polyak L, Darby DA (2012) Paleomagnetism of Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications for age models in the Arctic Ocean. Quat Sci Rev 32:48–63

    Google Scholar 

  22. Cronin TM, DeNinno LH, Polyak L, Caverly EK, Poore RZ, Brenner A, Rodriguez-Lazaro J, Marzen RE (2014) Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean. Mar Micropaleontol 111:118–133

    Google Scholar 

  23. Matthiessen J, Schreck M, De Schepper S, Zorzi C, de Vernal A (2018) Quaternary dinoflagellate cysts in the Arctic Ocean: potential and limitations for stratigraphy and paleoenvironmental reconstructions. Quat Sci Rev 191:1–26

    Google Scholar 

  24. Brennan CE, Meissner KJ, Eby M, Hillaire-Marcel C, Weaver AJ (2013) Impact of sea ice variability on the oxygen isotope content of seawater under glacial and interglacial conditions. Paleoceanography 28:388–400

    Google Scholar 

  25. Alexanderson H, Backman J, Cronin TM, Funder S, Ingólfsson Ó, Jakobsson M, Landvik JY, Löwemark L, Mangerud J, März C, Möller P, O’Regan M, Spielhagen RF (2014) An Arctic perspective on dating Mid-Late Pleistocene environmental history. Quat Sci Rev 92:9–31

    Google Scholar 

  26. Clark DL, Whitman RR, Morgan KA, Mackey SD (1980) Stratigraphy and glacial—marine sediments of the Amerasian Basin, central Arctic Ocean. The Geological Society of America, Boulder, pp 1–57 (special paper)

    Google Scholar 

  27. Matthiessen J, Niessen F, Stein R, Naafs BDA (2010) Pleistocene glacial marine sedimentary environments at the eastern Mendeleev Ridge, Arctic Ocean. Polarforschung 79:123–137

    Google Scholar 

  28. Sellén E, O’Regan M, Jakobsson M (2010) Spatial and temporal Arctic Ocean depositional regimes: a key to the evolution of ice drift and current patterns. Quat Sci Rev 29:3644–3664

    Google Scholar 

  29. Bischof J, Clark DL, Vincent J-S (1996) Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean. Paleoceanography 11:743–756

    Google Scholar 

  30. Phillips RL, Grantz A (1997) Quaternary history of sea ice and paleoclimate in the Amerasia basin, Arctic Ocean, as recorded in the cyclical strata of the Northwind Ridge. Geol Soc Am Bull 109:1101–1115

    Google Scholar 

  31. Phillips RL, Grantz A (2001) Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Mar Geol 172:91–115

    Google Scholar 

  32. Bazhenova E, Fagel N, Stein R (2017) North American origin of “pink-white” layers at the Mendeleev Ridge (Arctic Ocean): new insights from lead and neodymium isotope composition of detrital sediment component. Mar Geol 386:44–55

    Google Scholar 

  33. Polyak L, Jakobsson M (2011) Quaternary sedimentation in the Arctic Ocean: recent advances and further challenges. Oceanography 24:52–64

    Google Scholar 

  34. Adler RE, Polyak L, Ortiz JD, Kaufman DS, Channell JET, Xuan C, Grottoli AG, Sellén E, Crawford KA (2009) Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Glob Planet Change 68:18–29

    Google Scholar 

  35. März C, Stratmann A, Matthiessen J, Meinhardt AK, Eckert S, Schnetger B, Vogt C, Stein R, Brumsack HJ (2011) Manganese-rich brown layers in Arctic Ocean sediments: Composition, formation mechanisms, and diagenetic overprint. Geochim Cosmochim Acta 75:7668–7687

    Google Scholar 

  36. Löwemark L, März C, O’Regan M, Gyllencreutz R (2014) Arctic Ocean Mn-stratigraphy: genesis, synthesis and inter-basin correlation. Quat Sci Rev 92:97–111

    Google Scholar 

  37. Wang R, Polyak L, Xiao W, Wu L, Zhang T, Sun Y, Xu X (2018) Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: implications for Arctic climate variability on orbital time scales. Quat Sci Rev 181:93–108

    Google Scholar 

  38. Meinhardt AK, März C, Schuth S, Lettmann KA, Schnetger B, Wolff JO, Brumsack HJ (2016) Diagenetic regimes in Arctic Ocean sediments: Implications for sediment geochemistry and core correlation. Geochim Cosmochim Acta 188:125–146

    Google Scholar 

  39. Wang R, Xiao W, März C, Li Q (2013) Late Quaternary paleoenvironmental changes revealed by multi-proxy records from the Chukchi Abyssal Plain, western Arctic Ocean. Glob Planet Change 108:100–118

    Google Scholar 

  40. Yurco LN, Ortiz JD, Polyak L, Darby DA, Crawford KA (2010) Clay mineral cycles identified by diffuse spectral reflectance in Quaternary sediments from the Northwind Ridge: implications for glacial–interglacial sedimentation patterns in the Arctic Ocean. Polar Res 29:176–197

    Google Scholar 

  41. Jokat W (ed) (2009) The Expedition of the Research Vessel “Polarstern” to the Arctic in 2008 (ARKXXIII/3). Berichte zur Polarforschung 597

  42. Kang S-H, Nam S-I, Yim J-H, Chung K-H, Hong J-K (eds) (2012) Cruise report: RV Araon ARA03B, August 1–September 10, 2012, Chukchi Borderland and Mendeleyev Ridge

  43. Best AI, Gunn DE (1999) Calibration of marine sediment core loggers for quantitative acoustic impedance studies. Mar Geol 160:137–146

    Google Scholar 

  44. Löwermark L, Chen H-F, Yang T-N, Kylander M, Yu E-F, Hsu Y-W, Lee T-Q, Song S-R, Jarvis S (2011) Normalizing XRF-scanner data: a cautionary note on the interpretation of high resolution records from organic-rich lakes. J Asian Earth Sci 40:1250–1256

    Google Scholar 

  45. Tjallingii R, Röhl U, Kölling M, Bickert T (2007) Influence of the water content on X-ray fluorescence core-scanning measurements in soft marine sediments. Geochem Geophys Geosyst 8:1–12

    Google Scholar 

  46. Jang K, Han Y, Huh Y, Nam S-I, Stein R, Mackensen A, Matthiessen J (2013) Glacial freshwater discharge events recorded by authigenic neodymium isotopes in sediments from the Mendeleev Ridge, western Arctic Ocean. Earth Planet Sci Lett 369:148–157

    Google Scholar 

  47. Poore RZ, Osterman L, Curry WB, Phillips RL (1999) Late Pleistocene and Holocene meltwater events in the western Arctic Ocean. Geology 27:759–762

    Google Scholar 

  48. O’Regan M, King J, Backman J, Jakobsson M, Pälike H, Moran K, Heil C, Sakamoto T, Cronin TM, Jordan RW (2008) Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography 23:PA1S19

    Google Scholar 

  49. Kaufman DS, Polyak L, Adler R, Channell JET, Xuan C (2008) Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography 23:PA3224

    Google Scholar 

  50. Backman J, Fornaciari E, Rio D (2009) Biochronology and paleoceanography of late Pleistocene and Holocene calcareous nannofossil abundances across the Arctic Basin. Mar Micropaleontol 72:86–98

    Google Scholar 

  51. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703

    Google Scholar 

  52. Proshutinsky A, Bourke RH, McLaughlin FA (2002) The role of the Beaufort Gyre in Arctic climate variability: Seasonal to decadal climate scales. Geophys Res Lett 29:2100

    Google Scholar 

  53. Knies J, Vogt C (2003) Freshwater pulses in the Eastern Arctic Ocean during Saalian and Early Weichselian ice-sheet collapse. Quat Res 60:243–251

    Google Scholar 

  54. Bischof JF, Darby DA (1997) Mid- to Late Pleistocene ice drift in the western Arctic Ocean: evidence for a different circulation in the past. Science 277:74–78

    Google Scholar 

  55. Rudels B, Anderson L, Eriksson P, Fahrbach E, Jakobsson M, Melling EPJ, Prinsenberg H, Schauer S, Yao UT (2012) Observations in the Ocean. In: Lemke P (ed) Arctic climate change: the ACSYS decade and beyond. Springer, Berlin, pp 117–198

    Google Scholar 

  56. Svendsen JI, Alexanderson H, Astakhov VI, Demidov I, Dowdeswell JA, Funder S, Gataullin V, Henriksena M, Hjort C, Houmark-Nielsen M, Hubberten HW, Olfsson I, Jakobsson M, Kjæri KH, Larsen E, Lokrantz H, Pekka Lunkka J, Lyså A, Mangeruda J, Matiouchkov A, Murray A, Möller P, Niessen F, Nikolskaya O, Polyak L, Saarnisto M, Siegert M, Spielhagen RF, Stein R (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271

    Google Scholar 

  57. Hill JC, Driscoll NW (2010) Iceberg discharge to the Chukchi shelf during the Younger Dryas. Quat Res 74:57–62

    Google Scholar 

  58. Gusev EA, Zinchenko AG, Bondarenko CA, Anikin NY, Derevjanko LG, Maksimov FE, Kuznetsov VY, Levchenko SB, Zherebtsov IE, Popov VV (2012) New data on the topography and Quaternary deposits of the outer shelf, East Siberian Sea. Geology and Geoecology of the Eurazian Continental Margin. GEOS, Moscow

    Google Scholar 

  59. Romanovskii N, Hubberten H-W, Gavrilov A, Tumskoy V, Kholodov AL (2004) Permafrost of the east Siberian Arctic shelf and coastal lowlands. Quat Sci Rev 23:1359–1369

    Google Scholar 

  60. Gualtieri L, Vartanyan SL, Brigham-Grette J, Anderson PM (2005) Evidence for an ice-free Wrangel Island, northeast Siberia during the last glacial maximum. Boreas 34:264–273

    Google Scholar 

  61. Stauch G, Gualtieri L (2008) Late Quaternary glaciations in north-eastern Russia. J Quat Sci 23:545–558

    Google Scholar 

  62. Nikolsky DJ, Romanovsky VE, Romanovskii NN, Kholodov AL, Shakhova NE, Semiletov IP (2012) Modelling sub-sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region. J Geophys Res Earth Surf 117:F03028

    Google Scholar 

  63. Gard G, Backman J (1990) Synthesis of Arctic and Subarctic coccolith biochronology and history of North Atlantic drift water influx during the last 500.000 years. In: Bleil U, Thiede J (eds) Geological history of the Polar Oceans: Arctic versus Antarctic. Kluwer, Dordrecht, pp 417–436

    Google Scholar 

  64. The SWERUS Scientific Party (2016) Cruise report SWERUS-C3 Leg 2. Meddelanden från Stockholms universitets Bolin Centre for Climate Research No. 2

  65. Stein R, Fahl K, Gierz P, Niessen F, Lohmann G (2017) Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nat Commun 8:373

    Google Scholar 

  66. Jakobsson M, Mayer LA, Coakley B, Dowdeswell JA, Forbes S, Fridman B, Hodnesdal H, Noormets R, Pedersen R, Rebesco M, Schenke H-W, Zarayskaya AY, Accettella D, Armstrong A, Anderson RM, Bienhoff P, Camerlenghi A, Church I, Edwards M, Gardner JV, Hall JK, Hell B, Hestvik OB, Kristoffersen Y, Marcussen C, Mohammad R, Mosher D, Nghiem SV, Pedrosa MT, Travaglini PG, Weatherall P (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0, Geophys Res Lett. https://doi.org/10.1029/2012GL052219

    Article  Google Scholar 

  67. Jakobsson M, Andreassen K, Bjarnadóttir LR, Dove D, Dowdeswell JA, England JH, Funder S, Hogan K, Ingólfsson Ó, Jennings A, Krog Larsen N, Kirchner N, Landvik JY, Mayer L, Mikkelsen N, Möller P, Niessen F, Nilsson J, O’Regan M, Polyak L, Nørgaard-Pedersen N, Stein R (2014) Arctic Ocean glacial history. Quat Sci Rev 92:40–67

    Google Scholar 

Download references

Acknowledgements

We would like to thank the captain and crew of RV Araon and RV Polarstern for excellent collaboration and support during expeditions ARA03B, ARA06B, and PS72. Work on this paper was funded by the Seed-type Research Program (no. PE18350) of the Korea Polar Research Institute. LP was supported by the US National Science Foundation awards ARC-0806999 and ARC-1304755. In addition, this paper is a contribution to the AWI Research Program PACES II, 3.1 and 3.2. Comments from two anonymous reviewers helped improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Schreck or Seung-Il Nam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

41063_2018_57_MOESM1_ESM.pdf

Supplementary Table 1: Summary of radiocarbon ages and amino-acid racemization ages shown in Figure 2. Uncalibrated 14C ages are from ref. 39 (ARC2-M03), from ref. 34 (HLY0503-08JPC), from ref. 40 (P1-92AR-P25), and from ref. 12 (NP26). Amino-acid racemization ages are from ref. 50 (HLY0503-08JPC), and ref. 40 (P1-92AR-P25). Please note that Fig. 2 shows calibrated 14C ages according to calibrations given in the respective publications (PDF 27 KB)

Supplementary Table 2: Summary of sediment thickness data shown in Figure 8 (PDF 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schreck, M., Nam, SI., Polyak, L. et al. Improved Pleistocene sediment stratigraphy and paleoenvironmental implications for the western Arctic Ocean off the East Siberian and Chukchi margins. Arktos 4, 1–20 (2018). https://doi.org/10.1007/s41063-018-0057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0057-8

Keywords

Navigation