Elsevier

Chemical Geology

Volume 131, Issues 1–4, 30 September 1996, Pages 67-91
Chemical Geology

Research paper
SrNd isotopic record of multi-stage interactions between mantle-derived magmas and crustal components in a collision context — The ultramafic-granitoid association from Vivero (Hercynian belt, NW Spain)

https://doi.org/10.1016/0009-2541(96)00027-7Get rights and content

Abstract

Late-stage, epizonal calc-alkaline granitoids of the Hercynian belt are often associated with coeval more basic rocks. Such granitoids have been the focus of special attention when studying the role of mantle-derived magmas in granitoid genesis. These studies conclude that basic magmas are involved in granitoid production but their contribution to the chemical composition of granitoids is often controversial. The Vivero massif (NW Spain) includes calc-alkaline granitoids and coeval ultramafic and mafic rocks, but these granitoids are syntectonic and intruded into middle-crustal levels during an early stage.

Scattered major- and trace-element chemistry together with heterogeneous SrNd isotopic results preclude an origin of this ultramafic-to-granitoid association by any closed-system fractionation process. Ultramafic rocks include peridotites, pyroxenites and homblendites with ENdi from −3.5 to −1.3 and (87Sr86Sr)i ratio from 0.7059 to 0.7080. They are interpreted as cumulates formed by “in situ” fractional crystallization from contaminated basaltic magmas, particularly by interaction with 87Sr-enriched fluids. Mafic rocks comprise biotite-amphibole diorites, quartz diorites and tonalites with ϵNdi from −3.8 to 0.0 and (87Sr86Sr)i ratio from 0.7058 to 0.7073. They represent either cumulates or more evolved magmas of calc-alkaline affinity. These rocks display an inverse correlation between the degree of differentiation and the degree of contamination inferred from isotope data. This points to wall-rock assimilation by thermal erosion during ascent of basic magmas up to the middle crust and supports the participation of mantle sources with positive ENd; and (87Sr86Sr)i < 0.7058.

Granitoids range from amphibole-biotite tonalites, through biotite granodiorites to monzonitic granites. They show an isotopic trend which diverges from that of ultramafic and mafic rocks. ϵENdi (−6.0 to −1.9) decreases while (87Sr86Sr)i ratio (0.7061 to 0.7082) increases from tonalites to monzonitic granites, reflecting an increasing contribution of crustal components in more differentiated rocks. Assimilation and fractional crystallization, mixing included, account for such an evolution Contamination of basic magmas by this process occurring at deeper crustal level produced hybrid tonalites and related mafic magmatic enclaves. Only monzonitic granites are interpreted as pure crustal melts. Their HREE fractionated patterns [(Gd/Yb) = 4-5] suggest equilibrium with a garnet-rich residuum. Partial melting of moderate time-integrated Rb/Sr protolith, such as greywackes and/or meta-igneous rocks of intermediate-acid composition, could account for the isotopic composition of these monozogranites.

This example shows that at least some calc-alkaline granitoids of collisional setting are not produced by pure intra-crustal melting. They are formed through a complex, multi-stage hybridization process, involving mantle-derived magmas, crustal components and several concomitant magmatic processes.

References (103)

  • H. Downes et al.

    Crustal evolution of the Hercynian belt of Western Europe: Evidence from lower-crustal granulitic xenoliths (French Massif Central)

    Chem. Geol.

    (1990)
  • J.L. Duthou et al.

    Paleozoic granitoids from the French Massif Central: age and origin studied by the 87Rb87Sr system

    Phys. Earth Planet. Inter.

    (1984)
  • G. Galán et al.

    Cortlandtitic enclaves associated with talc-alkaline granites from Tapia-Asturias (Hercynian Belt, Northwestern Spain)

    Lithos

    (1989)
  • D.A. Galson et al.

    The determination of low concentrations of U. Th and K by XRF spectrometry

    Chem. Geol.

    (1983)
  • P.K. Harvey et al.

    The rapid determination of Rb, Sr and their ratios in geological materials by X-ray fluorescence spectrometry using a rhodium X-ray tube

    Chem. Geol.

    (1981)
  • H.E. Huppert et al.

    Cooling and contamination of matic and ultramafic magmas during ascent trough continental crust

    Earth Planet. Sci. Lett.

    (1985)
  • A. Perez-Estaun et al.

    Crustal thickening and deformation sequence in the footwall of the suture of the Variscan belt of northwest Spain

    Tectonophysics

    (1991)
  • C. Pin et al.

    Sources of Hercynian granitoids from the French Massif Central: Inferences from Nd isotopes and consequences for crustal evolution

    Chem. Geol.

    (1990)
  • H.N.A. Priem et al.

    Tracing crustal evolution in the NW Iberian Peninsula through the RbSr and UPb systematics of Paleozoic granitoids: a review

    Phys. Earth Planet. Inter.

    (1984)
  • F.J. Ryerson, et al.

    Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning

    Geochim. Cosmochim. Acta

    (1978)
  • W.N. Sawka et al.

    Fractionation of uranium, thorium and rare earth elements in a vertically zoned granodiorite: Implications for heat production distributions in the Sierra Nevada batholith, California, U.S.A.

    Geochim. Cosmochim. Acta

    (1988)
  • C.M. Allen

    Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: mineral. chemical and isotopic evidence

    Am. Mineral.

    (1991)
  • A. Autran et al.

    Relations entre les intrusions des granitoïdes; I'anatexie et le métamorphisme regional considérés principalement du point de vue du rôle dc I'eau: cas de la chame hercynienne des Pyrenees Orientales

    Bull. Soc. Géol. Fr.

    (1970)
  • J.M.J. Bedard

    Enclaves from the A-type granite of the Mégantic Complex

    J. Geophys. Res.

    (1990)
  • F. Bellido Mulas et al.

    Consideraciones petrológicas y cronológicas sobre las rocas hercmicas de Galicia

    Cuad. Lab. Xeol. Laxe.

    (1992)
  • D. Ben Othman et al.

    Recycling processes in granite-granodiorite complex genesis: the Quérigut case studied by NdSr isotope systematics

    Earth Planet. Sci. Lett.

    (1984)
  • M.J. Bickle et al.

    A strontium, neodymium and oxygen isotope study of hydrothermal metamorphism and crustal anatexis in the Trois Seigneurs Massif, Pyrenees, France

    Contrib. Mineral. Petrol.

    (1988)
  • J.D. Blundy et al.

    Calcic amphibole equilibria and a new amphibole-plagioclase gethermometer

    Contrib. Mineral. Petrol.

    (1990)
  • J.D. Blundy et al.

    Petrogenesis of Mafic Inclusions in Granitoids of the Adamello Massif, Italy

    J. Petrol.

    (1992)
  • G.C. Brown

    The changing pattern of batholith emplacement during Earth history

  • I.H. Campbell

    The difference between oceanic and continental tholeiites: a fluid dynamic explanation

    Contrib. Mineral. Petrol.

    (1985)
  • F. Cantagrel et al.

    Major, minor and Rare Earth element determinations in 25 rock standars by ICP-Atomic Emission Spectrometry

    Geostand. Newsl.

    (1994)
  • R. Capdevila

    Le métamorphisme regional progressif et les granites dans le segment hercynien de Galice Nord Oriental (NW de 1'Espagne)

  • R. Capdevila et al.

    Les différents types de granites hercyniens et leur distribution dans le Nord-Ouest de 1'Espagne

    Bol. Geol. Mineral.

    (1971)
  • R. Capdevila et al.

    Estimation radiométrique de Page de la deuxiéme phase tectonique hercynienne en Galice moyenne (Nord-Ouest de 1'Espagne)

    C.R. Acad. Sci., Paris

    (1970)
  • A. Cocherie

    Interactions manteau-croûte: son role dans la genèse d'associations plutoniques calco-alcalines, contraintes géodinamiques (elements en traces et isotopes du strontium et de l'oxygène)

    Doc. Bur. Rech. Géol. Min.

    (1985)
  • A. Cocherie et al.

    Crust and mantle contributions to granite genesis — An example from the Variscan batholith of Corsica, France, studied by trace-element and NdSrO-isotope systematics

    Chem. Geol.

    (1993)
  • C. Cocirta et al.

    Exemples de mélange de magmas en contexte plutonique: les enclaves des tonalites-granodiorites du massif de Bono (Sardaigne septentrionale)

    Can. J. Earth Sci.

    (1988)
  • R.D. Dallmeyer et al.

    40Ar/ 39Ar dating of deformation fabrics in the relative autochthon in NW Spain

    Terra Abstr., Supl. 1 to Terra Nova

    (1993)
  • G. Dias et al.

    The genesis of felsic-mafic plutonic associations: a Sr and Nd isotopic study of the Hercynian Braga Granitoid Massif (Northern Portugal)

    Lithos

    (1993)
  • J. Didier

    Granites and Their Enclaves

  • J. Didier et al.

    The different types of enclaves in granites - Nomenclature

  • F.C.W. Dodge et al.

    Some additional observations on inclusions in the granitic rocks of the Sierra Nevada

    J. Geophys. Res.

    (1990)
  • M.J. Dorais et al.

    Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada Batholith, California

    J. Petrol.

    (1990)
  • H. Downes et al.

    Granulitic xenoliths from the French Massif Central — Petrology, Sr and Nd isotope systematics and model ages estimates

  • P. Enrique et al.

    Las rocas ultramáficas del Macizo del Montnegre (Barcelona, NE de España): Características petrográficas, mineralǵicas y geoquímicas

    Bol. Inst. Geol. Min. Esp.

    (1989)
  • A. Ewart

    The mineralogy and Petrology of Tertiary-Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range

  • J. Fabries et al.

    The mafic silicates in the Saint Quay-Portieux gabbro-diorite intrusion: crystallization conditions of a calc-alkaline pluton

    Bull. Mineral.

    (1984)
  • L.G. Farmer et al.

    Origin of Mesozoic and Tertiary granite in the western United States and implications for pre-Mesozoic crustal structure, 1. Nd and Sr isotopic studies in the geocline of the northern Great Basin

    J. Geophys. Res.

    (1983)
  • S. Fourcade

    Géochimie des granitoïdes

  • Cited by (49)

    View all citing articles on Scopus
    View full text