Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T10:32:41.465Z Has data issue: false hasContentIssue false

Late Quaternary fluvial dynamics and landscape evolution at the lower Shulaveris Ghele River (southern Caucasus)

Published online by Cambridge University Press:  24 October 2017

Hans von Suchodoletz*
Affiliation:
University of Leipzig, Institute of Geography, Johannisallee 19a, D-04103 Leipzig, Germany
Dominik Faust
Affiliation:
University of Technology Dresden, Institute of Geography, Helmholtzstraße 10, D-01069 Dresden, Germany
*
*Corresponding author at: University of Leipzig, Institute of Geography, Johannisallee 19a, D – 04103 Leipzig, Germany. E-mail address: hans.von.suchodoletz@uni-leipzig.de (H. von Suchodoletz).

Abstract

The southern Caucasus was intensively settled through the Neolithic period to present. Studies of late Quaternary fluvial dynamics and landscape development at the lower Shulaveris Ghele River in southeastern Georgia aid understanding of the Quaternary history of this region. Our studies show that following river aggradation to form a fan-shaped alluvial surface during the late Pleistocene, fluvial sedimentation shifted west, leaving a fan surface subject only to local fluvial and colluvial processes as well as late Neolithic settlement. At about 6 ka, the river avulsed to the east and eroded some late Neolithic settlements occupying the eastern portion of the fan. The avulsion was followed by 3 distinct episodes of aggradation at about 6 ka, 3–2 ka, and since 1.0 ka. No such aggradation is evident in the early Holocene. Regional Holocene fluvial activity in this area was apparently influenced by vegetation dynamics, possibly controlled by regional climatic and/or anthropogenic factors, and significantly differs from the eastern Mediterranean region. All late Neolithic settlements were originally built far from an active river, possibly indicating late Neolithic water management systems.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhundov, T., 2004. South Caucasus in the Neolithic and early Bronze Age: The question of epochs and periods. In: Sagona, A. (Ed.), A view from the Highlands. Archaeological studies in honour of Charles Burney. Ancient Near East Studies, supplement 12, Edition Peeters, pp. 421436.Google Scholar
Benito, G., Macklin, M.G., Zielhofer, C., Jones, A.F., Machado, M.J., 2015. Holocene flooding and climate change in the Mediterranean. Catena 130, 1333.Google Scholar
Berberyan, M., 1997. Seismic sources of the Transcaucasian historical earthquakes. In: Giardini, D., Balassanian, S. (Eds.), Historical and prehistorical earthquakes in the Caucasus. NATO ASI Series 2 Environment 28. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 233311.Google Scholar
Bull, W.B., 1972. Recognition of alluvial-fan deposits in the stratigraphic record. In: Rigby, J.K., Hamblin, W.K. (Eds.), Recognition of Ancient Sedimentary Environments. Society of Economic Paleontologists and Mineralogists, Special Publication 16. Society for Sedimentary Research, Tulsa, Oklahoma, pp. 6383.Google Scholar
Chataigner, C., Badalyan, R., Arimura, M., 2014. The Neolithic of the Caucasus. Oxford Handbooks Online. http://dx.doi.org/10.1093/oxfordhb/9780199935413.013.13.Google Scholar
Collins, P.E.F., Rust, D.J., Bayraktutan, M.S., Turner, S.D., 2005. Fluvial stratigraphy and palaeoenvironments in the Pasinler Basin, eastern Turkey. Quaternary International 140–141, 121134.Google Scholar
Connor, S.E., Kvavadze, E.V., 2008. Modelling late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. Journal of Biogeography 36, 529545.CrossRefGoogle Scholar
Connor, S.E., Sagona, A., 2007. Environment and society in the Late Prehistory of Southern Georgia, Caucasus. In: Lyonnet, B. (Ed.), Les Cultures du Caucase (VIe-IIIe millénaires avant notre ère): leurs relations avec le Proche-Orient. CNRS, Éditions Recherche sur les Civilisations. Centre National de la Recherche Scientifique, Paris, pp. 21–36.Google Scholar
Connor, S.E., Thomas, I., Kvavadze, E.V., Arabuli, G.J., Avakov, G.S., Sagona, A., 2004. A survey of modern pollen and vegetation along an altitudinal transect in Southern Georgia, Caucasus region. Review of Palaeobotany and Palynology 129, 229250.Google Scholar
Dodonov, A.E., Zhou, L.P., Markovac, A.K., Tchepalygac, A.L., Trubikhina, V.M., Aleksandrovski, A.C., Simakova, A.N., 2006. Middle–Upper Pleistocene bio-climatic and magnetic records of the Northern Black Sea Coastal Area. Quaternary International 149, 4454.Google Scholar
Dreibrodt, S., Lomax, J., Nelle, O., Lubos, C., Fischer, P., Mitsuov, A., Reiss, S., et al. 2010. Are mid-latitude slopes sensitive to climatic oscillations? Implications from an Early Holocene sequence of slope deposits and buried soils from eastern Germany. Geomorphology 122, 351369.Google Scholar
Dreibrodt, S., Lubos, C., Lomax, J., Sipos, G., Schroedter, T., Nelle, O., 2014. Holocene landscape dynamics at the tell Arslantepe, Malatya, Turkey - soil erosion, buried soils and settlement layers, slope and river activity in a middle Euphrates catchment. The Holocene 24, 13511368.Google Scholar
Dütsch, C., Krbetschek, M.R., 1997. New methods for a better internal 40K dose rate determination. Radiation Measurements 27, 377381.Google Scholar
Faust, D., Zielhofer, C., Baena-Escudero, R., Diaz del Olmo, F., 2004. High-resolution fluvial record of late Holocene geomorphic change in northern Tunisia: climatic or human impact? Quaternary Science Reviews 23, 17571775.Google Scholar
Fort, J., Pujol, T., Vander Linden, M., 2012. Modelling the Neolithic transition in the Near East and Europe. American Antiquity 77, 203219.Google Scholar
Fuchs, M., 2001. Die OSL-Datierung von Archäosedimenten zur Rekonstruktion anthropogen bedingter Sedimentumlagerung. PhD dissertation, University of Heidelberg, Heidelberg, Germany.Google Scholar
Fuchs, M., Woda, C., Bürkert, A., 2007. Chronostratigraphy of a sediment record from the Hajar mountain range in north Oman: implications for optical dating of insufficiently bleached sediments. Quaternary Geochronology 2, 202207.Google Scholar
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: part I, experimental design and statistical models. Archaeometry 41, 339364.Google Scholar
Gamkrelidze, I.P., 2003. Geological map of Georgia 1:500,000. Georgian State Department of Geology and National Oil Company “SAQNAFTOBI.”Google Scholar
Gillmore, G.K., Coningham, R.A.E., Fazeli, H., Young, R.L., Magshoudi, M., Batt, C.M., Rusworth, G., 2009. Irrigation on the Tehran Plain, Iran: Tepe Pardis - the site of a possible Neolithic irrigation feature? Catena 78, 285300.Google Scholar
Gobejishvili, R., 2004. Late Pleistocene (Würmian) glaciation of the Caucasus. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations - Extent and Chronology. Elsevier, Amsterdam, pp. 129134.Google Scholar
Gogichaishvili, G.P., 2016. Soil erosion in river basins of Georgia. Eurasian Soil Science 49, 696704.CrossRefGoogle Scholar
Hamon, C., 2008. From Neolithic to Chalcolithic in the Southern Caucasus: economy and macrolithic implements from Shulaveri-Shomu sites of Kwemo-Kartli (Georgia). Paléorient 34, 85135.CrossRefGoogle Scholar
Hamon, C., Jalabadze, M., Agapishvili, T., Baudouin, E., Koridze, I., Messager, E., 2016. Gadachrili Gora: Architecture and organisation of a Neolithic settlement in the middle Kura Valley (6th millennium BC, Georgia). Quaternary International 395, 154169.Google Scholar
Hansen, S., Mirtskhulava, G., Bastert-Lamprichs, K., 2007. Aruchlo: a Neolithic settlement mound in the Caucasus. Neo-Lithics 1/07, 1319.Google Scholar
Holbrook, J., Schumm, S.A., 1999. Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings. Tectonophysics 305, 287306.Google Scholar
Huntley, D.J., Lamothe, M., 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.Google Scholar
Javakhishvili, A.I., 1973. Construction and Architecture of the Settlements of the Southern Caucasus from the 5th to the 3rd Millenium BC. [In Russian.] Edition Metsnerieba, Tbilisi.Google Scholar
Joannin, S., Ali, A.A., Ollivier, V., Roiron, P., Peyron, O., Chevaux, S., Nahapetyan, S., Tozalakyan, P., Karakhanyan, A., Chataigner, C., 2014. Vegetation, fire and climate history of the Lesser Caucasus: A new Holocene record from Zarishat fen (Armenia). Journal of Quaternary Science 29, 7082.Google Scholar
Juyal, N., Chamyal, L.S., Bhandari, S., Bhushan, R., Singhvi, A.K., 2006. Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar desert, India. Quaternary Science Reviews 25, 26322650.Google Scholar
Keggenhoff, I., Elizbarashvili, M., Amiri-Farahani, A., King, L., 2014. Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather and Climate Extremes 4, 7585.CrossRefGoogle Scholar
Kiguradze, T., 1986. Neolithische Siedlungen von Kvemo Kartli, Georgien. Materialien zur allgemeinen und vergleichenden Archäologie. Edition C.H. Beck, München.Google Scholar
Kiguradze, T., 2000. The Chalcolithic - Early Bronze Age transition in the eastern Caucasus. In: Marro, C., Hauptmann, A. (Eds.), Chronologies des pays du Caucase et de l’Euphrate aux IVe-IIIe millénaires. Actes de Colloque d’Istanbul, 16–19 décembre 1998. Varia Anatolica 11, 321–328.Google Scholar
Kvavadze, E., Jalabadze, M., Shakulashvili, N., 2010. Arguments indicating the presence of wine in Neolithic pots from Georgia using the method of palynological and chemical analysis. In: Proceedings of the 33rd World Congress of Vine and Wine and the 8th General Assembly of the International Organisation of Vine and Wine, 20–25 June 2010, Tbilisi, Georgia. International Organisation of Vine and Wine, Tbilsi, Georgia, pp. 123–132.Google Scholar
Lang, A., Hönscheid, S., 1999. Age and source of colluvial sediments at Vaihingen–Enz, Germany. Catena 38, 89107.Google Scholar
Leopold, L.B., Wolman, L.G., Miller, J., 1964. Fluvial Processes in Geomorphology. W.H. Freeman and Co, San Francisco.Google Scholar
Lordkipanidze, O., 2002. Georgien—Land und Raum. In Gambaschidze, I., Hauptmann, A., Slotta, R., Yalcin, Ü. (Eds.), Georgien. Schätze aus dem Land des Goldenen Vlies. Exhibition Catalogue for October 28, 2001–May 19, 2002. The German Mining Museum in Bochum, Germany, and Centre of Archaeological Research of the Georgian Academy of Science, Tbilisi, Georgia, 2001, pp. 253.Google Scholar
Lyonnet, B., Guliyev, F., Bouquet, L., Bruley-Chabot, G., Samzun, A., Pecqueur, L., Jovenet, E., et al. 2016. Mentesh Tepe, an early settlement of the Shomu-Shulaveri Culture in Azerbaijan. Quaternary International 395, 170183.Google Scholar
Mann, M.E., 2002. Little Ice Age. In: Munn, T. (Ed.), Encyclopedia of Global Environmental Change, Vol. I. John Wiley and Sons, Chichester, United Kingdom, pp. 504509.Google Scholar
Maruashvili, L.I., 1971. Gemorphology of Georgia: The Relief of the Georgian SSR in the Aspects of Layers, Origin, Dynamics and History. [In Russian.] Edition Metsnerieba, Tbilisi.Google Scholar
Messager, E., Belmecheri, S., Grafenstein, U.V., Nomade, S., Voinchet, P., Ollivier, V., Mgeladze, A., Lordkipanidze, D., Mazuy, A., Moreau, C., 2013. Palaeoenvironmental records of the last 13 ka in Lesser Caucasus: first data from Paravani Lake (Djavakheti, Georgia). Quaternary Science Reviews 77, 125140.CrossRefGoogle Scholar
Mithen, S., 2010. The domestication of water: water management in the ancient world and its prehistoric origins in the Jordan Valley. Philosophical Transactions of the Royal Society A 368, 52495274.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Nebieridze, L., 2010. The Tsopi Chalcolithic Culture. SABC Edition, Tbilisi.Google Scholar
Ollivier, V., Fontugne, M., Lyonnet, B., 2015. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109124.Google Scholar
Ollivier, V., Fontugne, M., Lyonnet, B., Chataigner, C., 2016. Base level changes, river avulsions and Holocene human settlement dynamics in the Caspian Sea area (middle Kura valley, South Caucasus). Quaternary International 395, 7994.Google Scholar
Phillips, D., 2014. Anastamosing channels in the lower Neches River valley, Texas. Earth Surface Processes and Landforms 39, 18881899.Google Scholar
Preusser, F., 2003. IRSL dating of K-rich feldspars using the SAR-protocol: Comparison with independent age control. Ancient TL 21, 1723.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rittenour, T.M., 2008. Luminescence dating of fluvial deposits: applications to geomorphic, palaeoseismic and archaeological research. Boreas 37, 613635.Google Scholar
Sahu, S., Raju, N.J., Saha, D., 2010. Active tectonics and geomorphology in the Sone-Ganga alluvial tract in mid-Ganga Basin, India. Quaternary International 227, 116126.Google Scholar
Suchodoletz, H., von, Gärtner, A., Hoth, S., Umlauft, J., Sukhishvili, L., Faust, D., 2016. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering – the Kura River (southern Caucasus). Geomorphology 266, 5365.Google Scholar
Suchodoletz, H., von, Menz, M., Kühn, P., Sukhishvili, L., Faust, D., 2015. Fluvial sediments of the Algeti River in southeastern Georgia – an archive of Late Quaternary landscape activity and stability in the Transcaucasian region. Catena 130, 95107.Google Scholar
Tokuyasu, K., Tanaka, K., Tsukamoto, S., Murray, A., 2010. The characteristics of OSL signal from quartz grains extracted from modern sediments in Japan. Geochronometria 37, 1319.Google Scholar
Torrent, J., Liu, Q., Bloemendal, J., Barrón, V., 2007. Magnetic enhancement and iron oxides in the upper Luochuan loess–paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal 71, 15701578.Google Scholar
Vincent, P.J., Lord, T.C., Telfer, M.W., Wilson, P., 2010. Early Holocene loessic colluviation in northwest England: new evidence for the 8.2 ka event in the terrestrial record? Boreas 40, 105115.Google Scholar
Vlaminck, S., Kehl, M., Lauer, T., Shahriari, A., Sharifi, J., Eckmeier, E., Lehndorff, E., Khormali, F., Frechen, M., 2016. Loess-soil sequence at Toshan (Northern Iran): Insights into late Pleistocene climate change. Quaternary International 399, 122135.CrossRefGoogle Scholar
Wells, N.A., Dorr, J.A., 1987. Shifting of the Kosi River, northern India. Geology 15, 204207.Google Scholar
Wirth, S., Glur, L., Gilli, A., Anselmetti, F.S., 2013. Holocene flood frequency across the Central Alps - solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quaternary Science Reviews 80, 112128.Google Scholar
Wolf, D., Baumgart, P., Meszner, S., Fülling, A., Haubold, F., Sahakyan, L., Meliksetian, K., Faust, D., 2016. Loess in Armenia – stratigraphic findings and palaeoenvironmental indications. Proceedings of the Geologists Association 127, 2939.Google Scholar
Zielhofer, C., Recio-Espejo, J.M., Nunez-Granados, M.A., Faust, D., 2009. Durations of soil formation and soil development indices in a Holocene Mediterranean floodplain. Quaternary International 209, 4465.Google Scholar
Supplementary material: File

von Suchodoletz and Faust supplementary material

von Suchodoletz and Faust supplementary material 1

Download von Suchodoletz and Faust supplementary material(File)
File 30.5 MB