Skip to main content
Log in

Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Surface waters, sediments and the polychaete Nereis diversicolor were sampled in the ScheldtEstuary between 1990 and 1994. In surface watersparticulate Hg (HgP) concentrations ranged from350–1610 ng g-1. They are essentiallycontrolled by physical mixing of polluted fluvialparticulates with relatively unpolluted marineparticulates, but unaffected by seasonal changes.Dissolved Hg species, on the other hand, show largeseasonal variations essentially controlled by theredox conditions in the estuary, as well as bybacterial and phytoplankton activity. Total dissolvedHg (HgTD) concentrations ranged from 0.5 to 3.0 ngl-1 with 10 to 90% as reactive Hg. Highconcentrations of HgTD are found in the upperestuary in the winter and decrease rapidly withincreasing salinity. In summer HgTDconcentrations are low in the anoxic upper estuary andincrease as oxygen is restored in the estuary.Significant variations were observed in dissolvedMonomethyl Hg (MMHg) concentrations withconcentrations ranging from 0.01 to 0.120 ng l-1 in the winter and 0.08 to 0.6 ng l-1 in summerand autumn. Particulate MMHg ranged from 2 to 6 ngg-1 in winter and from 4 to 10 ng g-1 insummer and accounted for 20 to 80% of the total MMHg.Hg° concentrations ranged from 0.02 to 0.130 ngl-1 and are higher in summer than in winter. Inthe lower estuary a positive correlation betweenHg° and phytoplankton pigments was observed.

Sediments and the polychaete N. diversicolorwere sampled on the intertidal flat GrootBuitenschoor. Hg_T concentrations in surfacesediments ranged from 144 to 1890 ng g-1 and MMHgfrom 0.8 to 6 ng g-1 accounting for 0.4 to 0.8%of the total mercury present. Both total Hg (HgT)and MMHg concentrations increased with increasedorganic matter content and anoxic conditions. On theother hand, accumulation of HgT and MMHg washigher in N. diversicolor living in coarse grainsandy sediments than in muddy sediments. MMHgconcentrations in N. diversicolor ranged from2.2 to 20.9 ng g-1 accounting for an average of18% of the HgT. Seasonal variationssignificantly affected Hg speciation in sediments andN. diversicolor. Higher HgT concentrationswere found in the sediments in autumn and winter,whereas MMHg concentrations increased in spring andsummer. Likewise, higher MMHg concentrations were alsoobserved in N. diversicolor in spring andsummer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, J. & T. Niilonen (eds), 1995. North Sea Progress Report, 4th International Conference on the Protection of the North Sea, Danish EPA, Copenhagen, Denmark, 247 pp.

    Google Scholar 

  • Baeyens, W., 1992. Speciation of mercury in different compartments of the environment. TRAC, Trends Anal. Chem. 11: 245–254.

    Article  CAS  Google Scholar 

  • Baeyens, W. & M. Leermakers, 1996. Particulate, dissolved and methylmercury budgets for the Scheldt estuary (Belgium and the Netherlands). In W. Baeyens, R. Ebinghaus & O. Vasiliev (eds), Global and Regional Mercury Cycles: Sources, fluxes and mass balances, Kluwer Academic Publishers: 285–301.

  • Baeyens, W., 1998. Evolution of trace metal concentrations in the Scheldt estuary (1978–1995). A comparison with other estuarine and ocean levels. Hydrobiologia 366: 157–167.

    Article  Google Scholar 

  • Baeyens, W., G. T. M. Van Eck, C. Lambert, R. Wollast & L. Goeyens, 1998. General description of the Scheldt estuary. Hydrobiologia 366: 1–14.

    Article  Google Scholar 

  • Balls, P. W., 1988. The control of trace metal concentrations in coastal seawater through partitioning onto suspended matter. Neth. J. Sea Res. 22: 213–218.

    Article  CAS  Google Scholar 

  • Bellama, M., K. L. Jewett, W. F. Manders & J. D. Nier, 1988. A comparison of the rates of methylation of Hg(II) species in aquatic media by various organitin and organosilicon moities. Sci. Total Envir. 73: 39–51.

    Article  CAS  Google Scholar 

  • Berman, M., T. Chase & R. Bartha, 1990. Carbon flow in mercury biomethylation by desulfovibrio desulfuricans. Appl. Envir. Microbiol. 56: 298–300.

    CAS  Google Scholar 

  • Bloom, N. & E. Crecelius, 1983. Determination of Hg in seawater at sub nanogram per liter levels. Mar. Chem. 14: 49–59.

    Article  CAS  Google Scholar 

  • Bloom, N. & W. F. Fitzgerald, 1988. Determination of volatile Hg species at picogram levels by low temperature gas chromatography with CVAFS detection. Anal. Chim. Acta. 208: 151–161.

    Article  CAS  Google Scholar 

  • Bloom, N., 1989. Determination of picogram levels of methylmercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence detection. Can. J. Fish. Aquat. Sci. 46: 1131–1140.

    Article  CAS  Google Scholar 

  • Bryan, G. W. & W. J. Langston, 1992. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Envir. Pollut. 76: 89–131.

    Article  CAS  Google Scholar 

  • Coquery, M. & D. Cossa, 1996. Mercury speciation in surface waters of the North Sea. Neth. J. Sea Res., in press.

  • Compeau, G. & R. Bartha, 1985. Sulfate reducing bacteria: principal methylators of mercury in anoxic estuarine sediments. Appl. Envir. Microbiol. 50: 498–502.

    CAS  Google Scholar 

  • Cossa, D., C. Gobeil & P. Coureau, 1988. Dissolved mercury behaviour in the Saint Lawrence estuary. Estuar. coast. Shelf Sci. 26: 227–230.

    Article  CAS  Google Scholar 

  • Cossa, D. & J. M. Martin. 1991. Mercury in the Rhone delta and adjacent marine areas. Mar. Chem. 36: 291–302.

    Article  CAS  Google Scholar 

  • Craig, P. J. & P. D. Bartlett, 1978. The role of H2S in the environmental transport of Hg. Craig Nature 275: 635–638.

    Article  CAS  Google Scholar 

  • Craig, P. J., 1986. Organomercury compounds in the Environment: Principals and Reactions. Longman Group Ltd. Essex, 362 pp.

    Google Scholar 

  • Craig, P. J. & P. A. Moreton, 1986. Total mercury, methylmercury and sulfide levels in British estuarine sediments III. Wat. Res. 20: 1111–1118.

    Article  CAS  Google Scholar 

  • Davidson, A. T. & H. J. Marchant, 1987. Binding of manganese by Antartic Phaeocystis pouchetii and the role of bacteria in its release. Mar. Biol. 95: 481–487.

    Article  CAS  Google Scholar 

  • Decadt, G., 1985. Contribution to the study of the biogeochemical cycle of mercury in the Southern Bight of the North Sea. PhD Dissertation. Vrije Universiteit Brussel, 172 pp.

    Google Scholar 

  • Decadt, G., W. Baeyens, D. Bradley & L. Goeyens, 1985. Determination of methylmercury in biological samples by semiautomated headspace analysis. Anal. Chem. 57: 2788–2791.

    Article  PubMed  CAS  Google Scholar 

  • Dennaï, N., N. Dhanaut-Coutois, J. M. Bouquegneau & A. Nejmeddine, 1986. Effects du cadmium et du mercure sur un ver marin (Nereis diversicolor). Mécanismes de détoxification. C. R. Acad. Sci., Ser. 302: 489–494.

    Google Scholar 

  • Devolder, M., Ph. D’Hondt & G. Verreet, 1991. Stofdossier 1: Kwik. Ministerie van Volksgezondheid en Leefmilieu. Beheerseenheid Mathematisch Model Noordzee, 101 pp.

  • Ericksen, K. D. H., H. L. Daae & R. A. Andersen, 1988. Evidence of presence of heavy metal binding proteins in polychaete species. Comp. Biochem. Physiol. A. 91: 377–384.

    Google Scholar 

  • Gill, G. A. & W. F. Fitzgerald, 1987. Picomolar Hg measurements in seawater and other materials using stannous chloride reduction and two stage amalgamation with gas phase detection. Mar. Chem. 20: 227–243.

    Article  CAS  Google Scholar 

  • Gilmour, C., E. A. Henry & R. Mitchell, 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Envir. Sci. Technol. 26: 2281–2287.

    Article  CAS  Google Scholar 

  • Horvat, M., N. Bloom & L. Liang, 1993. Comparison of distillation with other current isolation methods for the determination of methylmercury compounds in low level environmental samples. Part 1. Sediments. Anal. Chim. Acta. 281: 135–152.

    Article  CAS  Google Scholar 

  • Howell, G. N. & M. J. O’Connor, 1986. Methylmercury generation in seawater by transmethylation of organolead and-tin. Aust. J. Chem. 39: 1167–1175.

    Article  CAS  Google Scholar 

  • Iverfeldt, A. & O. Lindqvist, 1984. The transfer of mercury at the air-sea interface. In W. Brusart & G. H. Jirka (eds), Gas Transfer at Water Surfaces, D. Reidel Publishing Company: 533–538.

  • Iverfeldt, A., 1988. Mercury in the Norwegian fjord Framvaren. Mar. Chem. 23: 441–456.

    Article  CAS  Google Scholar 

  • Kerry, A., P. M. Welbourn, B. Prucha & G. Mierle, 1991. Mercury methylation by sulfate reducing bacteria from sediments of an acid stressed lake. Wat. Air Soil Pollut. 56: 565–575.

    Article  CAS  Google Scholar 

  • Kim, J. P. & W. F. Fitzgerald, 1986. Sea-air partitioning of mercury in the Equatorial Pacific Ocean. Science 231: 1131–1133.

    CAS  PubMed  Google Scholar 

  • Langston, W. J., 1986. Metals in sediments and benthic organisms in the Mersey estuary. Estuar. coast. Shelf Sci. 23: 239–261.

    Article  CAS  Google Scholar 

  • Leermakers, M., P. Lansens & W. Baeyens, 1990. Storage and stability of inorganic and methylmercury solutions. Fresenius’ J. Anal. Chem. 336: 656–662.

    Google Scholar 

  • Leermakers, M., M. Elskens, S. Panutrakul, F. Monteny & W. Baeyens, 1993. Geochemistry of mercury in an intertidal flat of the Scheldt estuary. Neth. J. Aquat. Ecol. 27: 267–277.

    Article  CAS  Google Scholar 

  • Mason, R. P., W. F. Fitzgerald, J. Jr. Hurley, P. L. Donaghay & J. M. Sieburth, 1993. Mercury biogeochemical cycling in a stratified estuary. Limnol. Oceanogr. 38: 1227–1241.

    Article  CAS  Google Scholar 

  • Mason, R. P., K. R. Rolfhus & W. F. Fitzgerald, 1995. Methylated and elemental mercury cycling in surface and deep ocean waters of the Northern Atlantic. Wat. Air Soil Pollut. 80: 665–677.

    Article  CAS  Google Scholar 

  • Miron, G., V. Brock & E. Kristensen, 1994. Effects of mercury on the ventilation behaviour of the polychaete Nereis virens(Sar.). J. Exp. Mar. Biol. Ecol. 184: 67–81.

    Article  CAS  Google Scholar 

  • Muhaya, B., M. Leermakers & W. Baeyens, 1997. Total mercury and methylmercury in sediments and polychaete Nereis Diversicolor at the Groot Buitenschoor (Scheldt estuary, Belgium). Wat. Air Soil Pollut. 94: 109–123.

    CAS  Google Scholar 

  • Nagase, H., Y. Ose, T. Sato & T. Ishikawa, 1984. Mercury methylation by compounds in humic matter. Sci. Total Envir. 73: 29–38.

    Article  Google Scholar 

  • Nakamura, K., M. Sakamoto, H. Uchiyama & O. Yagi, 1990. Organomercurial-volatilizing bacteria in the Hg polluted sediment of Minamata Bay, Japan. Appl. envir. Microbiol. 56: 304–305.

    CAS  Google Scholar 

  • Odin, M., A. Feurtet-Mazel, F. Ribeyre & A. Boudou, 1994. Actions and interactions of temperature, pH and photoperiod on mercury bioaccumulation by nymphs of the burrowing mayfly Hexagenia Rigida, from the sediment contamination source. Envir. Toxicol. Chem. 13: 1291–1302.

    CAS  Google Scholar 

  • Panutrakul, S. & W. Baeyens, 1991. Behaviour of heavy metals in a mud flat of the Scheldt estaury, Belgium. Mar. Pollut. Bull. 22: 128–134.

    Article  CAS  Google Scholar 

  • Panutrakul, S., 1993. Impact of the sulfur cycle on the mobilization of heavy metals in intertidal flat sediments. PhD Dissertation, Vrije Universiteit Brussel, 222 pp.

    Google Scholar 

  • Rainbow, P. S., 1990. Heavy metal levels in marine invertebrates. In R. W. Furness & P. S. Rainbow (eds), Heavy metals in the marine environment. CRC Press, Inc. Boca Raton: 67–79.

    Google Scholar 

  • Revis, N. W., T. R. Osborne, G. Holswoth & C. Hadden, 1989. Distribution of Hg species in soil from a Hg-contaminated site. Wat. Air Soil Pollut. 45: 105–113.

    CAS  Google Scholar 

  • Sanemasa, I., 1975. The solubility of elemental mercury vapor in water. Bull. Chem. Soc. Jpn. 48: 1795–1798.

    Article  CAS  Google Scholar 

  • Somville, M. & N. De Pauw, 1982. Influence of temperature and river discharge on water quality of the Western Scheldt estuary. Wat. Res. 16: 1349–1356.

    Article  CAS  Google Scholar 

  • Srinetr, V., 1992. The spatial diatribution of sediment bound metals and their relationships to bioavailability. A case study on the Groot Buitenschoor, Scheldt estuary. M. S. Dissertation, Vrije Universiteit Brussel, 155 pp.

    Google Scholar 

  • Van Impe, J., 1985. Estuarine pollution as a probable cause of increase of estuarine birds. Mar. Pollut. Bull. 16: 271–276.

    Article  Google Scholar 

  • Ysebaert, T., P. Meire, D. Maes & J. Buys, 1993. The benthic macrofauna along the estuarine gradient of the Scheldt estuary. Neth. J. Aquat. Ecol. 27: 327–341.

    Article  Google Scholar 

  • Zwolsman, J. J. G. & G. T. M. Van Eck, 1993. Dissolved and particulate trace metal geochemistry in the Scheldt estuary, S.W. Netherlands (water column and sediments). Neth. J. Aquat. Ecol. 27: 287–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeyens, W., Meuleman, C., Muhaya, B. et al. Behaviour and speciation of mercury in the Scheldt estuary (water, sediments and benthic organisms). Hydrobiologia 366, 63–79 (1997). https://doi.org/10.1023/A:1003124310848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003124310848

Navigation