Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mesozoic subducted slabs under Siberia

Abstract

Recent results from seismic tomography demonstrate that subducted oceanic lithosphere can be observed globally as slabs of relatively high seismic velocity in the upper as well as lower mantle1,2. The Asian mantle is no exception, with high-velocity slabs being observed downwards from the west Pacific subduction zones under the Kurile Islands, Japan and farther south3,4,5, as well as under Asia's ancient Tethyan margin. Here we present evidence for the presence of slab remnants of Jurassic age that were subducted when the Mongol–Okhotsk and Kular–Nera oceans closed between Siberia, the combined Mongolia–North China blocks and the Omolon block6,7,8. We identify these proposed slab remnants in the lower mantle west of Lake Baikal down to depths of at least 2,500 km, where they join what has been interpreted as a ‘graveyard’9 of subducted lithosphere at the bottom of the mantle. Our interpretation implies that slab remnants in the mantle can still be recognized some 150 million years or more after they have been subducted and that such structures may be useful in associating geodynamic to surface-tectonic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Early Cretaceous and Late Jurassic palaeoreconstructions of Siberia (SIB) and adjacent Asian blocks8.
Figure 2: Tomographic P-wave velocity anomaly patterns in the deep mantle under Asia, for four different depths between 1,500 and 2,700 km.
Figure 3: Cross-section through tomographic model.
Figure 4: A comparison of the locations of tomographic velocity anomalies and the expected palaeolocations of the Siberian active margins.

Similar content being viewed by others

References

  1. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep-mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Grand, S., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA today 7, 1–7 (1997).

    Google Scholar 

  3. van der Hilst, R., Engdahl, R., Spakman, W. & Nolet, G. Tomographic imaging of subducted lithosphere below the northwest Pacific island arcs. Nature 353, 37–43 (1991).

    Article  ADS  Google Scholar 

  4. Richards, M. A. & Engebretson, D. C. Large-scale mantle convection and the history of subduction. Nature 355, 437–440 (1992).

    Article  ADS  Google Scholar 

  5. Wen, L. & Anderson, D. L. The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet. Sci. Lett. 133, 185–198 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Şengör, A. M. C. & Natal'in, B. A. in The Tectonic Evolution of Asia(eds Yin, A. & Harrison, M.) 486–640 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  7. Zhao, X. X., Coe, R. S., Zhou, Y., Wu, H. & Wang, J. New paleomagnetic results from northern China: Collision and suturing with Siberia and Kazakhstan. Tectonophysics 181, 43–81 (1990).

    Article  Google Scholar 

  8. Enkin, R., Yang, Z. Y., Chen, Y. & Courtillot, V. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the Present. J. Geophys. Res. 97, 13953–13989 (1992).

    Article  ADS  Google Scholar 

  9. Wysession, M. E. in Subduction(eds Bebout, G. et al.) 369–384 (Monogr. 96, Am. Geophys. Union, Washington DC, (1996)).

    Google Scholar 

  10. Yin, A. & Nie, S. Y. in The Tectonic Evolution of Asia(eds Yin, A. & Harrison, M.) 442–485 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  11. Gilder, S. & Courtillot, V. Timing of the North-South China collision from new middle to late Mesozoic paleomagnetic data from the North China block. J. Geophys. Res. 102, 17713–17727 (1997).

    Article  ADS  Google Scholar 

  12. Ziegler, A. M. et al. in The Tectonic Evolution of Asia(eds Yin, A. & Harrison, M.) 371–400 (Cambridge Univ. Press, (1996)).

    Google Scholar 

  13. Parfenov, L. M. Tectonics of the Verkhoyansk-Kolyma Mesozoides in the context of plate tectonics. Tectonophysics 199, 319–342 (1991).

    Article  ADS  Google Scholar 

  14. Bijwaard, H., Spakman, W. & Engdahl, R. Closing the gap between regional and global travel time tomography. J. Geophys. Res. 103, 30055–30078 (1998).

    Article  ADS  Google Scholar 

  15. Dziewonski, A. M., Hager, B. H. & O'Connell, R. J. Large-scale heterogeneities in the lower mantle. J. Geophys. Res. 82, 239–255 (1977).

    Article  ADS  Google Scholar 

  16. Zhou, H. Ahigh resolution P-wave model for the top 1200 km of the mantle. J. Geophys. Res. 101, 27791–27810 (1996).

    Article  ADS  Google Scholar 

  17. Engdahl, E. R., van der Hilst, R. D. & Buland, R. P. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seismol. Soc. Am. 88, 722–743 (1998).

    Google Scholar 

  18. Spakman, W. & Bijwaard, H. Irregular cell parameterization of tomographic problems. Ann. Geophys. 16 (suppl. 1), 28 (1998).

    Google Scholar 

  19. Curtis, C., Dost, B., Trampert, J. & Snieder, R. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures. J. Geophys. Res.(in the press).

  20. Ritzwoller, M. H. & Levshin, A. L. Eurasian surface wave tomography: Group velocities. J. Geophys. Res. 103, 4839–4878 (1998).

    Article  ADS  Google Scholar 

  21. Cande, S. C., Raymond, C. A., Stock, J. & Haxby, W. F. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic plate motions during the Cenozoic. Science 270, 947–953 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Tarduno, J. A. & Cottrell, R. D. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor Seamounts. Earth Planet. Sci. Lett. 153, 171–180 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. & Le Stunff, Y. Ageodynamic model of mantle density heterogeneity. J. Geophys. Res. 98, 21895–21909 (1993).

    Article  ADS  Google Scholar 

  24. Lithgow-Bertelloni, C. & Richards, M. A. The dynamics of Cenozoic and Mesozoic plate motions. Rev. Geophysics 36, 27–78 (1998).

    Article  ADS  Google Scholar 

  25. Scotese, C. R. & Golonka, J. Paleomap Paleogeographic Atlas(Paleomap project, Univ. Texas, Arlington, (1992)).

    Google Scholar 

  26. Zhong, S. & Gurnis, M. Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Gurnis, M. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 232, 695–699 (1988).

    Article  ADS  Google Scholar 

  28. Kennett, B. L. N., Engdahl, E. R. & Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995).

    Article  ADS  Google Scholar 

  29. Zhao, X. X., Coe, R. S., Gilder, S. A. & Frost, G. M. Palaeomagnetic constraints on palaeogeography of China: Implications for Gondwanaland. Austr. J. Earth Sci. 43, 643–672 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Richards and M. Gurnis for constructive comments. H.B. was supported by the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Van der Voo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Voo, R., Spakman, W. & Bijwaard, H. Mesozoic subducted slabs under Siberia. Nature 397, 246–249 (1999). https://doi.org/10.1038/16686

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/16686

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing