Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melting of a subducting oceanic crust from U–Th disequilibria in austral Andean lavas

Abstract

Understanding crustal genesis at convergent plate boundaries is important for determining mass transfer between different geochemical reservoirs in the Earth's mantle, and for deciphering the long-term growth of the continental crust. Most arc magmas are thought to be generated from fluid-induced melting of the mantle wedge above slabs of subducting oceanic crust1. Such magmas frequently display 238U enrichments or radioactive equilibrium2,3 between 238U and its radiogenic product 230Th. But where a young and hot oceanic crust is being subducted it may itself partially melt and produce calc-alkaline andesites and dacites, termed adakites4. Here we report a uniform excess of 230Th over 238U, but variable Th isotope ratios, in young adakites from the Andean austral volcanic zone south of the triple junction where the Chile ridge subducts beneath South America. We show that these results are compatible with the adakites having been formed by approximately 20% equilibrium melting due to amphibole decomposition in a heterogeneous5 oceanic crust. Moreover, both the degree of melting of the oceanic crust and its thermal structure appear to be uniform under most of the Andean austral volcanic zone. Such partial melting of subducted oceanic slabs may have occurred throughout the Earth's history where young oceanic plates were subducted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the southern Andes showing location of the volcanoes discussed in the text (modified from ref.13).
Figure 2: The Th–U isochron diagram showing the contrasting results for AVZ and SVZ.
Figure 3: Variations of La/Yb with (238U/230Th).

Similar content being viewed by others

References

  1. Gill, J. B. Organic Andesites and Plate Tectonics (Springer, New York, (1981)).

    Book  Google Scholar 

  2. McDermott, F. & Hawkesworth, C. Th, Pb and Sr isotope variations in young island arc volcanics and oceanic sediments. Earth Planet. Sci. Lett. 104, 1–15 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Condomines, M. & Sigmarsson, O. Why are so many magmas close to 238U-230Th radioactive equilibrium? Geochim. Cosmochim. Acta 57, 4491–4497 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–665 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Klein, E. M. & Karsten, J. L. Ocean-ridge basalts with convergent-margin geochemical affinities from the Chile Ridge. Nature 374, 52–57 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Martin, H. in The Archean Crustal Evolution (ed. Condie, K. C.) 205–259 (Elsevier, Amsterdam, (1995)).

    Google Scholar 

  7. Allegre, C. J. & Condomines, M. Basalt genesis and mantle structure studied through Th isotope geochemistry. Nature 299, 21–24 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Cande, S. C. & Leslie, R. B. Late Cenozoic tectonics of the Southern Chile trench. J. Geophys. Res. 91, 471–496 (1986).

    Article  ADS  Google Scholar 

  9. Forsythe, R. D. et al. Pilocene near-trench magmatism in southern Chile: a possible manifestation of ridge collision. Geology 14, 23–27 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Lagabrielle, Y., Le Moigne, J., Maury, R. C., Cotten, J. & Bourgois, J. Volcanic record of the subduction of an active spreading ridge: Taitao Peninsula (southern Chile). Geology 22, 515–518 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Bourgois, J., Martin, H., Lagabrielle, Y., Le Moigne, J. & Frutos-Jara, J. Subduction erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area). Geology 24, 723–726 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Forsyth, D. W. Fault plane solution and tectonics of the South Atlantic and Scotia Sea. J. Geophys. Res. 80, 1429–1443 (1975).

    Article  ADS  Google Scholar 

  13. Stern, C. R. & Kilian, R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol. 123, 263–281 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Hildreth, W. & Moorbath, S. Crustal contribution to arc magmatism in the Andes of Central Chile. Contrib. Mineral. Petrol. 98, 455–489 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Stern, C. R., Futa, K. & Muehlenbachs, K. in Andean Magmatism: Chemical and Isotopic Constraints (eds Harmon, R. S. & Barreiro, B.) 31–46 (Shiva, Cheshire, (1984)).

    Book  Google Scholar 

  16. Martin, H. Archaean and modern granitoids as indicators of changes in geodynamic processes. Rev. Bras. Geocienc. 17, 360–365 (1987).

    Google Scholar 

  17. Sigmarsson, O., Condomines, M. & Fourcade, S. Adetailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib. Mineral. Petrol. 112, 20–34 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Sigmarsson, O., Condomines, M., Morris, J. D. & Harmon, R. S. Uranium and 10Be enrichments by fluids in Andean arc magmas. Nature 346, 163–165 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Peacock, S. M., Rushmer, T. & Thompson, A. B. Partial melting of subducted oceanic crust. Earth Planet. Sci. Lett. 121, 227–244 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Schiano, P. et al. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377, 595–600 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Beattie, P. Uranium-thorium disequilibria and partitioning on melting garnet peridotite. Nature 363, 63–65 (1993).

    Article  ADS  CAS  Google Scholar 

  23. LaTourette, T. K., Kennedy, A. K. & Wasserburg, G. J. Thorium-uranium fractionation by garnet: evidence for a deep source and rapid rise of oceanic basalts. Science 261, 739–742 (1993).

    Article  ADS  Google Scholar 

  24. Johnson, K. T. M. Experimental cpx/ and garnet/melt partitioning of REE and other trace elements at high pressures: petrogenetic implications. Mineral. Mag. A 58, 454–455 (1994).

    Article  ADS  Google Scholar 

  25. Tribuzio, R., Messiga, B., Vannucci, R. & Bottazzi, P. Rare earth element redistribution during high-pressure-low-temperature metamorphism in ophiolotic Fe-gabbros (Liguria, northwestern Italy): implications for light REE mobility in subduction zone. Geology 24, 711–714 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Mezger, K., Hanson, G. N. & Bohlen, S. R. High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 96, 106–118 (1989).

    Article  ADS  CAS  Google Scholar 

  27. Brenan, J. M., Shaw, H. F., Phinney, D. L. & Ryerson, F. J. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: implications for high field strength element depletions in island-arc basalts. Earth Planet. Sci. Lett. 128, 327–339 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Kelemen, P. M. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  29. Leeman, W. P., Smith, D. R., Hildreth, W., Palacz, Z. & Rogers, N. Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. J. Geophys. Res. 95, 19561–19582 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Stern and R. Kilian for the samples, M. Condomines, J. Gill, A.Hochstaedter, M. Schmidt and D. Vielzeuf for discussions, and J. Morris and S. Turner for reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sigmarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmarsson, O., Martin, H. & Knowles, J. Melting of a subducting oceanic crust from U–Th disequilibria in austral Andean lavas. Nature 394, 566–569 (1998). https://doi.org/10.1038/29052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing