Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Global influence of the AD 1600 eruption of Huaynaputina, Peru

Abstract

It has long been estabished that gas and fine ash from large equatorial explosive eruptions can spread globally, and that the sulphuric acid that is consequently produced in the stratosphere can cause a small, but statistically significant, cooling of global temperatures1,2. Central to revealing the ancient volcano–climate connection have been studies linking single eruptions to features of climate-proxy records such as found in ice-core3,4,5 and tree-ring6,7,8 chronologies. Such records also suggest that the known inventory of eruptions is incomplete, and that the climatic significance of unreported or poorly understood eruptions remains to be revealed. The AD 1600 eruption of Huaynaputina, in southern Peru, has been speculated to be one of the largest eruptions of the past 500 years; acidity spikes from Greenland and Antarctica ice3,4,5, tree-ring chronologies6,7,8, along with records of atmospheric perturbations in early seventeenth-century Europe and China9,10, implicate an eruption of similar or greater magnitude than that of Krakatau in 1883. Here we use tephra deposits to estimate the volume of the AD 1600 Huaynaputina eruption, revealing that it was indeed one of the largest eruptions in historic times. The chemical characteristics of the glass from juvenile tephra allow a firm cause–effect link to be established with glass from the Antarctic ice, and thus improve on estimates of the stratospheric loading of the eruption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isopach map of Huaynaputina tephra deposit showing the strong westerly distribution of the deposit.
Figure 2: Subseasonal record of sulphate concentrations in the GISP2 ice core for the period AD 1601–05.

Similar content being viewed by others

References

  1. Cadle, R. D., Kiang, C. S. & Louis, J. F. The global scale dispersion of the eruption clouds from major volcanic eruptions. J. Geophys. Res. 81, 3125 – 3132 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Mass, C. F. & Portman, D. A. Major volcanic eruptions and climate: a critical evaluation. J. Clim. 2, 566 – 593 (1989).

    Article  ADS  Google Scholar 

  3. Hammer, C. U., Clausen, H. B. & Dansgaard, W. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230 – 235 (1980).

    Article  ADS  Google Scholar 

  4. Zielinski, G. A. Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the GISP2 Greenland ice core. J. Geophys. Res. 100, 20937 – 20955 (1995).

    Article  ADS  Google Scholar 

  5. Delmas, R. J., Kirchner, S., Palais, J. M. & Petit, J. R. 1000 years of explosive volcanism recorded at the South Pole. Tellus B44, 335 – 350 (1992).

    Article  ADS  Google Scholar 

  6. LaMarche, V. C. & Hirschboeck, K. K. Frost rings in trees as records of major volcanic eruptions. Nature 307, 121 – 126 (1984).

    Article  ADS  Google Scholar 

  7. Jones, P. D., Briffa, K. R. & Schweingrubeer, F. H. Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geophys. Res. Lett. 22, 1333 – 1336 (1995).

    Article  ADS  Google Scholar 

  8. Briffa, K. R., Jones, P. D., Schweingruber, F. H. & Osborn, T. J. Influence of volcanic eruptions on Northern Hemisphere summer temperatures over 600 years. Nature 393, 450 – 455 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Lamb, H. H. Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Phil. Trans. R. Soc. Lond. A 266, 425 – 533 (1970).

    Article  ADS  Google Scholar 

  10. Scuderi, L. A. Oriental sunspot observations and volcanism. Q. J. R. Astron. Soc. 31, 109 – 120 (1990).

    ADS  Google Scholar 

  11. de Silva, S. L., Alzueta, J. & Salas, G. in Volcanic Disasters in Human Antiquity(eds Heiken, G. & McCoy, F.) (Geol. Soc. Am. Spec. Paper, in the press).

  12. Newhall, C. & Self, S. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. 87, 1231 – 1238 (1982).

    Article  ADS  Google Scholar 

  13. Simkin, T. & Fiske, R. Krakatau 1883; the Volcanic Eruption and its Effects(Smithsonian Inst., Washington DC, 1983).

    Google Scholar 

  14. Hildreth, W. New perspectives on the eruption of 1912 Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Bull. Volcanol. 49, 680 – 693 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Scott, W. E. et al. in Fire Mud: Eruptions and Lahars of Mount Pinatubo, Philippines(eds Newhall, C. G. & Punongbayan, R. S.) 545 – 571 (Univ. Washington Press, Seattle, 1996).

    Google Scholar 

  16. Palais, J. M., Kirchner, S. & Delmas, R. J. Identification of some global volcanic horizons by major element analysis of fine ash in Antarctic ice. Ann. Glaciol. 14, 216 – 220 (1990).

    Article  ADS  Google Scholar 

  17. Pyle, D. M. On the ‘climate effectiveness’ of volcanic eruptions. Quat. Res. 37, 125 – 129 (1992).

    Article  Google Scholar 

  18. McCormick, M. P., Thomason, L. W. & Trepte, C. R. Atmospheric effects of the Mt Pinatubo eruption. Nature 373, 399 – 404 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Zielinski, G. A. et al. Climatic impact of the AD 1783 eruption of Asama (Japan) was minimal: evidence from the GISP2 ice core. Geophys. Res. Lett. 21, 2365 – 2368 (1994).

    Article  ADS  Google Scholar 

  20. Zielinski, G. A. et al. Assessment of the record of the 1982 El Chichón eruption as preserved in Greenland snow. J. Geophys. Res. 102, 30031 – 30045 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Clausen, H. B. et al. Acomparison of the volcanic records over the past 4000 years from the Greenland ice core project and Dye 3 Greenland ice cores. J. Geophys. Res. 102, 26707 – 26723 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Cole-Dai, J., Mosley-Thompson, E. & Thompson, L. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores. J. Geophys. Res. 102, 16761 – 16771 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Briffa, K. R. et al. Fennoscandian summers from AD 500: temperature changes on short and long timescales. Clim. Dyn. 7, 111 – 119 (1992).

    Article  Google Scholar 

  24. Briffa, K. R., Jones, P. D. & Schweingrubeer, F. H. Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. J. Clim. 5, 735 – 754 (1992).

    Article  ADS  Google Scholar 

  25. Scuderi, L. A. Tree ring evidence for climatically effective volcanic eruptions. Quat. Res. 34, 67 – 86 (1990).

    Article  Google Scholar 

  26. Filion, L., Payette, S., Gauthier, L. & Boutin, Y. Light rings in subarctic conifers as a dendrochronological tool. Quat. Res. 26, 272 – 279 (1986).

    Article  Google Scholar 

  27. Anonymous Annáler 6 493 – 494 (1400–1800).

    Google Scholar 

  28. Frisch, C. (ed.) Joannis Kepleris Astronomi Opera Omnia 2/3(1856–1871).

    Google Scholar 

  29. Keen, R. A. Volcanic aerosols and lunar eclipses. Science 222, 1011 – 1013 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Simkin, T. & Siebert, L. Volcanoes of the World 2nd edn(Geoscience Press, Tucson, 1994).

    Google Scholar 

  31. Pyle, D. M. The thickness, volume, and grainsize of trephra fall deposits. Bull. Volcanol. 51, 1 – 15 (1989); Assessment of the minimum volume of tephra fall deposits. J. Volcanol. Geotherm. Res. 69, 379 – 382 (1995).

    Article  ADS  Google Scholar 

  32. Fierstein, J. & Nathenson, M. Another look at the calculation of fallout tephra volume. Bull. Volcanol. 54, 156 – 167 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Salas, P. Francis, S. Self and the Instituto Geofisico de Peru, particularly the late M. Chang, for their collaboration on this project; P. Mayewski, L. D. Meeker, S. Whitlow and M. Twickler for their work in producing the initial sulphate time series of the GISP2 ice core; M. Germani and J. Palais for their help with the GISP2 tephra studies; J. Fierstein, M. Nathenson and N. Adams for help and discussions about the volume estimates; the members of the GISP2 community for work in developing the chronology of the core; and the Science Management Office, Polar Ice Coring Office and 109th Air National Guard for logistical support. Funding for this work has come from Indiana State University, and the National Science Foundation Petrology and Geochemistry Program, Office of Polar Programs (GISP2 work), and Atmospheric Sciences Program. The manuscript has benefited considerably from thorough reviews by D. Pyle and P. Allard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanaka L. de Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Silva, S., Zielinski, G. Global influence of the AD 1600 eruption of Huaynaputina, Peru. Nature 393, 455–458 (1998). https://doi.org/10.1038/30948

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30948

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing