Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of diopside dissolution from hydrogen depth profiling

Abstract

The basic processes involved at the reaction interface during the aqueous dissolution of crystalline silicates are a matter of controversy. In particular, the existence of a hydrated or protonated surficial layer which has been invoked to explain dissolution kinetics has not been demonstrated yet. By using a resonant nuclear reaction, which allows hydrogen depth profiling, we present, in the case of diopside, the first direct evidence that dissolution proceeds via a surficial hydration over thicknesses of about 1,000 Å. This evidence is combined with X-ray photoelectron spectrometry and secondary ion mass spectrometry data, to show that approximately congruent leaching at energetic portions of the mineral surface allows permeation of the resulting porous structure by water, much of which is strongly bonded to the silicate surface. Thus, we suggest that the migration of molecular water into the surface could be a key step in the dissolution kinetics of diopside and probably of other cationic silicate minerals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wollast, R. Geochim. cosmochim. Acta 31, 635–648 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Helgeson, H. C. Geochim. cosmochim. Acta 35, 421–469 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Paces, T. Geochim. cosmochim. Acta 37, 2641–2663 (1973).

    Article  ADS  CAS  Google Scholar 

  4. Lagache, M. Bull. Soc.fr. Minér. Cristallogr. 88, 223–253 (1965).

    CAS  Google Scholar 

  5. Schott, J., Berner, R. A. & Sjöberg, E. L. Geochim. cosmochim. Acta 45, 2123–2135 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Holdren, G. R. & Berner, R. A. Geochim. cosmochim. Acta 43, 1161–1171 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Aagaard, P. & Helgeson, H. C. Am. J. Sci. 282, 237–285 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Helgeson, H. C., Murphy, W. M. & Aagaard, P. Geochim. cosmochim. Acta 48, 2405–2432 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Berner, R. A. & Holdren, G. R. Geochim. cosmochim. Acta 43, 1173–1186 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Brantley, S. L., Crane, S. R., Crerar, D. A., Hellmann, R. & Stallard, R. Geochim. cosmochim. Acta 50, 2349–2361 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Lasaga, A. C. & Blum, A. E. Geochim. cosmochim. Acta 50, 2363–2379 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Chou, L. & Wollast, R. Geochim. cosmochim. Acta 48, 2205–2217 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Schott, J. & Berner, R. A. Geochim. cosmochim. Acta 47, 2333–2340 (1983).

    Article  Google Scholar 

  14. Lanford, W. A., Davis, K., Lamarche, P., Laursen, T. & Groleau, R. J. J. Non-Cryst. Solids 33, 249–266 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Della Mea, G., Dran, J.-C., Petit, J.-C., Bezzon, G. & Rossi-Alvarez, C., Nucl. Instrum. Meth. 218, 493–499 (1983).

    Article  CAS  Google Scholar 

  16. Petit, J.-C., Dran, J.-C. & Delia Mea, G., Bull. Minér. 110, 25–42 (1987).

    CAS  Google Scholar 

  17. Bunker, B. C., Arnold, G. W., Beauchamp, E. K. & Day, D. E. J. Non-Cryst. Solids 58, 295–322 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Smets, B. M. I. & Tholen, M. G. W. Phys. Chem. Glasses 26, 60–63 (1985).

    CAS  Google Scholar 

  19. Doremus, R. H., J. non-cryst. Solids 19, 137–144 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Smets, B. M. L. & Lommen, T. P. A. Phys. Chem. Glasses 23, 83–87 (1982).

    CAS  Google Scholar 

  21. Dran, J. C., Langevin, Y. & Petit, J. C. Nucl. Instrum. Meth. B1, 557–568 (1984).

    Article  Google Scholar 

  22. Berner, R. A., Schott, J. & Holdren, G. R. Geochim. cosmochim. Acta 49, 1657–1658 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, JC., Delia Mea, G., Dran, JC. et al. Mechanism of diopside dissolution from hydrogen depth profiling. Nature 325, 705–707 (1987). https://doi.org/10.1038/325705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/325705a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing