Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compositional convection and layering in a rock melt

Abstract

When a crystal grows (or dissolves) in a solution it becomes surrounded by a thin boundary zone of liquid that is relatively depleted (or enriched) in crystal components. The compositional difference and, hence, the horizontal density gradient that exist in this zone, may cause it to convect away from the crystal1. This process of natural convection is a possible cause of fractionation and liquid layering in crystallizing magmas2–9. Experiments with aqueous solutions have demonstrated the efficacy of the process in model magma chambers4,10, and recent growth and dissolution experiments involving minerals in rock melts have suggested that compositional convection indeed occurs in silicate systems11–15, but the process has not been demonstrated unequivocally for rock melts. Here we report on simple experiments involving silica dissolution in a superheated mafic rock melt in which compositional layering evidently occurred. The results are consistent with the operation of compositional convection during dissolution, and suggest that more rigorous experiments will be useful in testing some of the new principles of fluid motion recently introduced to petrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wagner, C. J. phys. Chem. 53, 1030–1032 (1949).

    Article  CAS  Google Scholar 

  2. Chen, C. F. & Turner, J. S. J. geophys. Res. 85, 2573–2593 (1980).

    Article  ADS  CAS  Google Scholar 

  3. McBirney, A. R. J. Volcan. geotherm. Res. 7, 357–371 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Huppert, H. E. & Sparks, R. S. J. A. Rev. Earth planet. Sci. 12, 11–37 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Sparks, R. S. J., Huppert, H. S. & Turner, J. S. Phil. Trans. R. Soc. A310, 511–534 (1984).

    Article  ADS  Google Scholar 

  6. McBirney, A. R., Baker, B. H. & Nilson, R. H. J. Volcan. geotherm. Res. 24, 1–24 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Martin, D. J. Publs geol. Soc. Aust. 1, 107–140 (1985).

    Google Scholar 

  8. Lowell, R. P. J. Volcan. geotherm. Res. 26, 1–24 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Nilson, R. H., McBirney, A. R. & Baker, B. H. J. Volcan. geotherm. Res. 24, 25–54 (1985).

    Article  ADS  Google Scholar 

  10. Turner, J. S. & Gustafson, L. B. J. Volcan. geotherm. Res. 11, 93–125 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Muncill, G. E. Eos 67, 1279 (1986).

    Google Scholar 

  12. Kuo, L.-C. & Kirkpatrick, R. J. Am. J. Sci. 185, 51–90 (1985).

    Article  ADS  Google Scholar 

  13. Donaldson, C. H. Miner. Mag. 49, 51–90 (1985).

    Google Scholar 

  14. Donaldson, C. H. Mater. Sci. Forum. 7, 267–274 (1986).

    Article  CAS  Google Scholar 

  15. Brearley, M. & Scarfe, C. M. J. Petrology 27, 1157–1182 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Busby, T. S. & Barker, J. J. Am. Ceram. Soc. 48, 441–446 (1966).

    Article  Google Scholar 

  17. Bottinga, Y. & Weill, D. F. Am. J. Sci. 269, 169–182 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Mo, X., Carmichael, I. S. E., Rivers, M. & Stebbins, J. Miner. Mag. 45, 237–245 (1982).

    Article  CAS  Google Scholar 

  19. Baines, W. D. & Turner, J. S. J. Fluid Mech. 37, 51–80 (1969).

    Article  ADS  Google Scholar 

  20. Turner, J. S. & Campbell, I. H. Earth Sci. Rev. 23, 225–325 (1986).

    Article  ADS  Google Scholar 

  21. Busby, T. S. & Eccles, J. Glass Technol. 5, 115–123 (1964).

    CAS  Google Scholar 

  22. Cooper, A. R. & Kingery, W. D. J. phys. Chem. 66, 665–669 (1962).

    Article  CAS  Google Scholar 

  23. Tritton, D. J. Physical Fluid Dynamics (van Nostrand Reinhold, London, 1977).

    Book  Google Scholar 

  24. Berg, W. F. Proc. R. Soc. A164, 79–95 (1938).

    ADS  CAS  Google Scholar 

  25. Irvine, T. N. Geology 5, 273–277 (1977).

    Article  ADS  CAS  Google Scholar 

  26. Hardee, H. C. J. Volcan. geotherm. Res. 19, 45–72 (1983).

    Article  ADS  Google Scholar 

  27. Turner, J. S., Campbell, I. H. & Leitch, A. Eos 66, 397 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donaldson, C., Hamilton, D. Compositional convection and layering in a rock melt. Nature 327, 413–415 (1987). https://doi.org/10.1038/327413a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/327413a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing