Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal settling in a vigorously convecting magma chamber

Abstract

There has been much debate concerning the mechanism of fractional crystallization in magma chambers. The traditional hypothesis of crystal settling has been widely replaced by the concept of in situ crystallization coupled with compositional convection. Observations from layered intrusions, however, are equivocal1–4. Doubts have been raised about crystal settling on theoretical grounds because convective velocities in magma chambers are often much greater than the crystal settling velocities predicted by Stokes' law5, but there has been no experimental study of crystal settling in such vigorous convection. Here we present physical considerations and laboratory experiments which show that the phenomenon of particle settling in these conditions can be accounted for by a simple theory. Application of this theory to crystal settling in magma chambers suggests that crystal settling may be an efficient differentiation mechanism, at least in basaltic magma chambers, despite large convective velocities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Irvine, T. N. Geol. Soc. Am. Mem. 138 (1974).

  2. Campbell, I.H. Lithos 11, 311–323 (1978).

    Article  ADS  Google Scholar 

  3. McBirney, A. R. & Noyes, R. M. J. Petrol. 20, 487–554 (1979).

    Article  ADS  Google Scholar 

  4. Parsons, I. & Butterfield, A. W. J. geol. Soc. Lond. 138, 289–305 (1981).

    Article  CAS  Google Scholar 

  5. Sparks, R. S. J., Huppert, H. E. & Turner, J. S. Phil. Trans. R. Soc. A 310, 511–534 (1984).

    ADS  Google Scholar 

  6. Stommel, H. J. mar. Res. 8, 24–29 (1949).

    Google Scholar 

  7. Marsh, B. D. & Maxey, M. R. J. Volcan. geotherm. Res. 24, 95–150 (1985).

    Article  ADS  Google Scholar 

  8. Weinstein, S. A., Yuen, D. A. & Olson, P. L. Earth planet Sci. Lett. 87, 237–248 (1988).

    Article  ADS  Google Scholar 

  9. Martin, D., Griffiths, R. W. & Campbell, I. H. Cont. Miner. Petrol. 96, 465–475 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Carrigan, C. R. Geophys. Res. Lett. 14, 915–918 (1987).

    Article  ADS  Google Scholar 

  11. Jams, G. T. Phys. Earth. planet. Inter. 36, 305–327 (1984).

    Article  ADS  Google Scholar 

  12. Bartlett, R. W. Am. J. Sci. 267, 1067–1082 (1969).

    Article  ADS  Google Scholar 

  13. Huppert, H. E. & Sparks, R. S. J. Contr. Miner. Petrol. 75, 279–289 (1980).

    Article  ADS  Google Scholar 

  14. Kraichnan, R. H. Phys. Fluids 5, 1374–1389 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  15. Garon, A. M. & Goldstein, R. J. Phys. Fluids 16, 1818–1825 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Deardorff, J. W. & Willis, G. E. J. Fluid Mech. 28, 675–704 (1967).

    Article  ADS  Google Scholar 

  17. Fitzgerald, D. E. J. Fluid Mech. 73, 693–719 (1976).

    Article  ADS  Google Scholar 

  18. Krishnamurti, R. & Howard, L. N. Proc. natn. Acad. Sci. U.S.A. 78, 1981–1985 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Barnea, E. & Mizrahi, J. J. chem. Engng 5, 171–189 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, D., Nokes, R. Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988). https://doi.org/10.1038/332534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332534a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing