Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity

Abstract

Pyrolite1 is a hypothetical mixture of distinct minerals which iswidely believed to represent the composition of the Earth's mantle. The main pressure-induced phase transformations of the olivine component of pyrolite occur at about 13.5 GPa (α to β) and 24 GPa (γ to MgSiO3-rich perovskite + magnesiowüstite)2,3, which are thought to be responsible for the seismic discontinuities at 410 and 660 km depths in the mantle. Recent seismological studies, however, have demonstrated that the 410-km seismic discontinuity is sharper in some areas than that expected from the α to β transformation in mantle olivine with a fixed composition4,5,6,7. Moreover, some mineral physics studies suggest that the seismic velocity jump at the 410-km discontinuity is inconsistent with that associated with the α to β transformation in olivine8,9. Here we present a phase equilibria study of a material having pyrolite composition at pressures of 6–16 GPa. We found that the iron content in olivine changes significantly with increasing pressure, as a result of the formation of a relatively iron-rich majorite phase at these pressures. This variation in iron content can overcome, or at least reduce, both of the above difficulties encountered with the pyrolite model of mantle composition, by showing that the component mineral systems cannot be treated as separate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mineral proportion and zero-pressure density (ρ0) changes in pyrolite as a function of pressure, estimated on the basis of the present experiments.
Figure 2: Variations of Mg# (that is, 100 Mg/(Mg + Fe)) with pressure in coexisting phases.
Figure 3: The observed variations of Mg# in olivine (I) and modified spinel (II) in pyrolite, plotted on the phase diagram of Mg2SiO4-Fe2SiO4 at 1,400 °C.

Similar content being viewed by others

References

  1. Ringwood, A. E. in Advances in Earth Sciences (ed. Hurley, P. M.) 287–356 (MIT Press, Cambridge, MA, 1966).

    Google Scholar 

  2. Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4 at high-pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 15663–15670 (1989).

    Article  ADS  Google Scholar 

  3. Akaogi, M., Ito, E. & Navrotsky, A. J. Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application. J. Geophys. Res. 94, 15671–15685 (1989).

    Article  ADS  Google Scholar 

  4. Benz, H. M. & Vidale, J. E. Sharpness of upper mantle discontinuities determined from high-frequency reflections. Nature 365, 147–150 (1993).

    Article  ADS  Google Scholar 

  5. Yamazaki, A. & Hirahara, K. The thickness of upper mantle discontinuities, as inferred from short-period J-array data. Geophys. Res. Lett. 22, 2557–2560 (1995).

    Article  Google Scholar 

  6. Vidale, J. E., Ding, X. Y. & Grand, S. P. The 410 km-depth discontinuity: a sharpness estimate from near-critical reflections. Geophys. Res. Lett. 22, 2557–2560 (1995).

    Article  ADS  Google Scholar 

  7. Neele, F. Sharp 400-km discontinuity from short period P reflections. Geophys. Res. Lett. 23, 419–422 (1996).

    Article  ADS  Google Scholar 

  8. Duffy, T. S. Elasticity of forsterite to 16GPa and the composition of the upper mantle. Nature 378, 170–173 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Zha, C. S. et al. Single-crystal elasticity of β-Mg2SiO4 to the pressure of the 410-km seismic discontinuity in the Earth's mantle. Earth Planet. Sci. Lett. 147, 9–15 (1997).

    Article  ADS  Google Scholar 

  10. Irifune, T. Absence of an aluminous phase in the upper part of the Earth's lower mantle. Nature 370, 131–133 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Irifune, T. An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys. Earth Planet. Inter. 45, 324–336 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Ito, E. & Katsura, T. Atemperature profile of the mantle transition zone. Geophys. Res. Lett. 16, 425–428 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Nishizawa, O. & Akimoto, S. Partition of magnesium and iron between olivine and spinel and between pyroxene and spinel. Contrib. Mineral. Petrol. 41, 217–230 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Akimoto, S. et al. in The Physics and Chemistry of Minerals and Rocks (ed. Strens, R. G. J.) 327–363 (Wiley, London, 1976).

    Google Scholar 

  15. Akaogi, M. & Akimoto, S. High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys. Earth Planet. Inter. 19, 31–51 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Takahashi, E. & Ito, E. in High-Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono, Y.) 427–437 (Terra Publ./Am. Geophys. Union, Tokyo, 1987).

    Google Scholar 

  17. Helffrich, G. & Bina, C. R. Frequency dependence of the visibility and depths of mantle seismic discontinuities. Geophys. Res. Lett. 21, 2613–2616 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Stixrude, L. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys. Res. 102, 14835–14852 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Solomatov, V. S. & Stevenson, D. J. Can sharp seismic discontinuities be caused by non-equilibrium phase transformations? Earth Planet. Sci. Lett. 125, 267–279 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Revenaugh, J. & Sipkin, S. A. Seismic evidence for silicate melt at the 410 km mantle discontinuity. Nature 369, 474–476 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Wood, B. J. The effect of H2O on the 410-kilometer seismic discontinuity. Science 268, 74–76 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Weidner, D. J. Amineral physics test of a pyrolite mantle. Geophys. Res. Lett. 12, 417–420 (1985).

    Article  ADS  CAS  Google Scholar 

  23. Bina, C. R. & Wood, B. J. The 400-km seismic discontinuity and the proportion of olivine in the Earth's upper mantle. Nature 324, 449–451 (1986).

    Article  ADS  Google Scholar 

  24. Gwanmesia, G. D., Rigden, S., Jackson, I. & Liebermann, R. C. Pressure dependence of elastic wave velocity for β-Mg2SiO4 and the composition of the Earth's mantle. Science 250, 794–797 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Duffy, T. S. & Anderson, D. L. Seismic velocities in mantle minerals and the mineralogy of the Earth as determined from seismic profiles. J. Geophys. Res. 94, 1895–1912 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Li, B., Gwanmesia, G. D. & Liebermann, R. C. Sound velocities of olivine and beta polymorphs of Mg2SiO4 at Earth's transition zone pressure. Geophys. Res. Lett. 23, 2259–2262 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Rigden, S. M. et al. Spinel elasticity and the seismic structure of the transition zone of the mantle. Nature 354, 143–145 (1991).

    Article  ADS  Google Scholar 

  28. Zha, C. S., Duffy, T. S., Mao, H. K. & Hemley, R. J. in High-Pressure Temperature Research: Properties of Earth and Planetary Materials (eds. Manghnani, M. H. & Yagi, T., in the press).

  29. Morishima, T. et al. The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265, 1202–1203 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Inoue for discussions, K. Fukuhama for initial experiments, and C.R.Bina for comments. This work was supported by Grant-in-Aids for Scientific Research from Monbusho and JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Irifune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irifune, T., Isshiki, M. Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392, 702–705 (1998). https://doi.org/10.1038/33663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33663

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing