Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers

Abstract

Recent advances in the application of molecular genetic approaches have emphasized our potentially huge underestimate of microbial diversity in a range of natural environments1. These approaches, however, give no direct information about the biogeochemical processes in which microorganisms are active2. Here we describe an approach to directly link specific environmental microbial processes with the organisms involved, based on the stable-carbon-isotope labelling of individual lipid biomarkers. We demonstrate this approach in aquatic sediments and provide evidence for the identity of the bacteria involved in two important biogeochemical processes: sulphate reduction coupled to acetate oxidation in estuarine and brackish sediments3,4, and methane oxidation in a freshwater sediment5. Our results suggest that acetate added in a 13C-labelled form was predominantly consumed by sulphate-reducing bacteria similar to the Gram-positive Desulfotomaculum acetoxidans and not by a population of the more widely studied Gram-negative Desulfobacter spp. Furthermore, 13C-methane labelling experiments suggest that type I methanotrophic bacteria dominate methane oxidation at the freshwater site.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of the 13C-acetate labelling study in intertidal sediments of the Tamar Estuary, UK.
Figure 2: Comparison of 13C-acetate PLFA labelling patterns of Tamar sediments with published7,8 PLFA compositions of pure cultures of mesophilic sulphate-reducing bacteria.
Figure 3: Results of the 13C-methane labelling study in Lake Loosdrecht sediment, The Netherlands.

Similar content being viewed by others

References

  1. Amann, R. I., Ludwig, W. & Schleifer, K.-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Teske, A., Waver, C., Muyzer, G. & Ramsing, N. B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 62, 1405–1415 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jørgensen, B. B. Mineralization of organic matter in the sea bed. The role of sulphate reduction. Nature 296, 643–645 (1982).

    Article  ADS  Google Scholar 

  4. Sørensen, J., Christensen, D. & Jørgensen, B. B. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl. Environ. Microbiol. 42, 5–11 (1981).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor, J. & Parkes, R. J. The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129, 3303–3309 (1983).

    CAS  Google Scholar 

  7. Dowling, N. J. E., Widdel, F. & White, D. C. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J. Gen. Microbiol. 132, 1815–1825 (1986).

    CAS  Google Scholar 

  8. Kohring, L. L. et al. Comparison of phylogenetic relationships based on phospholipid fatty acid profiles and ribosomal RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119, 303–308 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Parkes, R. J., Gibson, G. R., Mueller-Harvey, I., Buckingham, W. J. & Herbert, R. A. Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J. Gen. Microbiol. 135, 175–187 (1989).

    CAS  Google Scholar 

  10. Wellsbury, P. & Parkes, R. J. Acetate bioavailability and turnover in an estuarine sediment. FEMS Microbiol. Ecol. 17, 85–94 (1995).

    Article  CAS  Google Scholar 

  11. Oremland, R. S. & Capone, D. G. Use of “specific” inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285–383 (1988).

    Article  CAS  Google Scholar 

  12. Guckert, J. B., Antworth, C. P., Nichols, P. D. & White, D. C. Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol. Ecol. 31, 147–158 (1985).

    Article  CAS  Google Scholar 

  13. Ratledge, C. & Wilkinson, S. G. Microbial lipids (Academic, New York, 1988).

    Google Scholar 

  14. Widdel, F. & Pfennig, N. Anew anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch. Microbiol. 112, 119–122 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Widdel, F. & Pfennig, N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129, 395–400 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Keith, S. M., Herbert, R. A. & Harfoot, C. G. Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostate enrichments. J. Appl. Bacteriol. 53, 29–33 (1982).

    Article  Google Scholar 

  17. Laanbroek, H. J. & Pfennig, N. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128, 330–335 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Widdel, F. New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148, 286–291 (1987).

    Article  CAS  Google Scholar 

  19. Devereux, R. & Mundfrom, G. W. Aphylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl. Environ. Microbiol. 60, 3437–3439 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wawer, C. & Muyzer, G. Genetic divesity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61, 2203–2210 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lillebæk, R. Application of antisera raised agaisnt sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea. Appl. Environ. Microbiol. 61, 3436–3442 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Devereux, R., Winfrey, M. R., Winfrey, J. & Stahl, D. A. Depth profile of sulfate-reducing bacterial ribosomal RNA and mercury methylation in an estuarine sediment. FEMS Microbiol. Ecol. 20, 23–31 (1996).

    Article  CAS  Google Scholar 

  23. Sinke, A. J. C., Cottaar, F. H. M., Buis, K. & Keizer, P. Methane oxidation by methanotrophs and its effects on the phosphate flux over the sediment-water interface in an eutrophic lake. Microb. Ecol. 24, 259–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Bowman, J. P., Sly, L. I. & Stacklebrandt, E. The phylogenetic position of the family methylococcaceae. Int. J. Sys. Bacteriol. 45, 182–185 (1993).

    Article  Google Scholar 

  25. Whiticar, M. J. & Faber, E. Methane oxidation in sediment and water column environments: Isotope evidence. Org. Geochem. 10, 759–768 (1985).

    Article  Google Scholar 

  26. Summons, R. E., Jahnke, L. J. & Roksandic, Z. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim. Cosmochim. Acta 58, 2853–2863 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Freeman, K. H., Hayes, J. M., Trendel, J.-M. & Albrecht, P. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343, 254–256 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Moriarty, D. J. W., White, D. C. & Wassenberg, T. J. Aconvenient method for mesuring rates of phospholipid synthesis in seawater and sediments: Its relevance to the determination of bacterial productivity and the disturbance artefacts introduced by measurements. J. Microbiol. Meth. 3, 321–330 (1985).

    Article  CAS  Google Scholar 

  29. de Graaf, W., Wellsbury, P., Parkes, R. J. & Cappenberg, T. E. Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: Evidence for isotopic exchange. Appl. Environ. Microbiol. 62, 772–777 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pel, R. et al. Stable-isotope analysis of a combined nitrification-denitrification sustained by thermophilic methanotrophs under low-oxygen condtions. Appl. Environ. Microbiol. 63, 474–481 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. J. Laanbroek, J. J. Middelburg and K. Perry for comments on earlier versions of the manuscript; L.-A. Meyer-Reil and M. Köster for their help at Rügen, Germany; and S.P.Barnes for the enrichment of acetate-using Desulfotomaculum from Tamar sediments. This work was supported by the European Union Environment Programme and the UK Natural Environmental Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. S. Boschker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boschker, H., Nold, S., Wellsbury, P. et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801–805 (1998). https://doi.org/10.1038/33900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33900

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing