Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Analogues of epithermal gold–silver deposition in geothermal well scales

Abstract

ACTIVE geothermal fields are generally recognized1–5 as modern analogues of the systems responsible for the formation of epithermal gold–silver ore deposits. We have investigated this analogy by studying scales precipitated at various depths in a geothermal well containing boiling fluids. Our results, presented here, show that concentrations and distributions of gold, silver, copper, lead and zinc in well M-53 at Cerro Prieto, Mexico, are comparable to those found in economic epithermal vein deposits, and that the highest concentrations of metals occur at or near the fluid production horizon. The onset of vapour separation or flashing at these depths in the well indicates that boiling caused sequential base and precious metal saturation through the loss of CO2 and H2S, respectively, to the vapour phase. These phenomena provide direct evidence that boiling of chloride-rich hydrothermal solutions may be responsible for the deposition and zonation of gold, silver, copper, lead and zinc in epithermal vein deposits. Geothermal well scales can thus provide the opportunity to study epithermal ore genesis in a wide variety of natural environments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. White, D. E. Econ. Geol. 50th Anniversary Vol., 99–154 (1955).

  2. Weissberg, B. G., Browne, P. R. L. & Seward, T. M. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 632–683 (Wiley, New York, 1979).

    Google Scholar 

  3. White, D. E. Econ. Geol. 75th Anniversary Vol., 392–423 (1981).

  4. Henley, R. W. & Ellis, A. J. Earth Sci. Rev. 19, 1–50 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Henley, R. W. Rev. econ. Geol. 2, 1–24 (1985).

    Google Scholar 

  6. Skinner, B. J. et al. Econ. Geol. 62, 316–330 (1967).

    Article  CAS  Google Scholar 

  7. Lebedev, L. M. Dokl. Akad. Nauk SSSR 174, 173–176 (1967).

    Google Scholar 

  8. Lebedev, L. M. Geochem. Int. 21, 485–504 (1972).

    Google Scholar 

  9. Karabelas, A. J. et al. Geothermics 18, 169–174 (1989).

    Article  CAS  Google Scholar 

  10. Brown, K. L. Econ. Geol. 81, 979–983 (1986).

    Article  CAS  Google Scholar 

  11. Hurtado, R. et al. in Proc. Int. Symp. on Solving Corrosion and Scaling Problems in Geothermal Systems 165–176 (Natn. Ass. Corrosion Engng, Houston, 1984).

    Google Scholar 

  12. Clark, J. R. & Williams-Jones, A. E. Program with Abstracts 11, 57 (Geol. Ass. Canada, 1986).

    Google Scholar 

  13. Mercado, S. et al. Geothermics 18, 225–232 (1989).

    Article  CAS  Google Scholar 

  14. Imai, H. et al. Kozan Chishitsu 38, 291–301 (1988).

    CAS  Google Scholar 

  15. McKibben, M. A., Williams, A. E. & Hall, G. E. M. Geothermal Resources Council, Trans. 13, 45–48 (1989).

    CAS  Google Scholar 

  16. Roedder, E. Rev. Miner. 12 (1984).

  17. Ewers, G. R. & Keays, R. R. Econ. Geol. 72, 1337–1354 (1977).

    Article  CAS  Google Scholar 

  18. Brown, K. L. Econ. Geol. Monogr. 6, 320–327 (1989).

    Google Scholar 

  19. Seward, T. M. Econ. Geol. Monogr. 6, 398–404 (1989).

    Google Scholar 

  20. Drummond, S. E. & Ohmoto, H. Econ. Geol. 80, 126–147 (1985).

    Article  CAS  Google Scholar 

  21. Reed, M. H. & Spycher, N. Rev. econ. Geol. 2, 249–272 (1985).

    Google Scholar 

  22. Cole, D. R. & Drummond, S. E. J. geochem. Explor. 25, 45–79 (1986).

    Article  CAS  Google Scholar 

  23. Spycher, N. F. & Reed, M. H. Econ. Geol. 84, 328–359 (1989).

    Article  CAS  Google Scholar 

  24. Haas, J. L. Econ. Geol. 66, 940–946 (1971).

    Article  CAS  Google Scholar 

  25. Gallup, D. L. Geothermics 18, 97–103 (1989).

    Article  CAS  Google Scholar 

  26. Seward, T. M. Geochim. cosmochim. Acta 37, 379–399 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Shenberger, D. M. & Barnes, H. L. Geochim cosmochim. Acta 53, 269–278 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Seward, T. M. Geochim. cosmochim. Acta 40, 1329–1341 (1976).

    Article  ADS  CAS  Google Scholar 

  29. Gammons, C. H. & Barnes, H. L. Geochim. cosmochim. Acta 53, 279–290 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Crerar, D. S. & Barnes, H. L. Econ. Geol. 71, 772–794 (1976).

    Article  CAS  Google Scholar 

  31. Seward, T. M. Geochim. cosmochim. Acta 48, 121–134 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Bourcier, W. L. & Barnes, H. L. Econ. Geol. 82, 1839–1863 (1987).

    Article  CAS  Google Scholar 

  33. Buchanan, L. J. Arizona geol. Soc. Dig. 14, 237–262 (1981).

    CAS  Google Scholar 

  34. Berger, B. R. & Eimon, P. I. in Cameron Volume on Unconventional Mineral Deposits (ed. Shanks, W. C.) 191–205 (Soc. Min. Engng, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, J., Williams-Jones, A. Analogues of epithermal gold–silver deposition in geothermal well scales. Nature 346, 644–645 (1990). https://doi.org/10.1038/346644a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346644a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing