Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe)O

Abstract

THE electrical conductivity of the lower mantle, which controls the transmission of geomagnetic signals to the Earth's surface, has been the subject of recent controversy1,2. Peyronneau and Poirier1 extrapolated high-pressure conductivity measurements of the lower-mantle assemblage (Mg, Fe)SiO3 perovskite plus (Mg, Fe)O magnesiowüstite from 673 K to lower-mantle temperatures (2,200–2,500 K) to obtain conductivities consistent with geomagnetic observations ( 1 S m−1 at 1,000-km depth). The high-pressure study of Li and Jeanloz2 gave conductivities several orders of magnitude lower. Here we report measurements of conductivity and thermopower of the iron-rich phase (Mg, Fe)O at high temperature (1,173–1,773 K) and controlled oxygen partial pressure (pO2). We find that pO2 has a very large influence on conductivity: at fixed temperature and pressure, changes in pO2 can vary the conductivity by 1.5 orders of magnitude within the stability field of magnesiowüstite. For plausible mantle values of pO2, temperature and bulk composition, we obtain results in good agreement with those of ref. 1, indicating that magnesiowüstite is the dominant conductor in the lower mantle and that observed upper- and lower-mantle conductivities can be produced by the same bulk composition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peyronneau, J. & Poirier, J.-P. Nature 342, 537–539 (1989).

    Article  ADS  Google Scholar 

  2. Li, X. & Jeanloz, R. J. geophys. Res. 95, 5067–5078 (1990).

    Article  ADS  Google Scholar 

  3. Ito, E. & Takahashi, E. J. geophys. Res. 94, 10637–10646 (1989).

    Article  ADS  Google Scholar 

  4. Wood, B. J. J. geophys. Res. 95, 12681–12685 (1990).

    Article  CAS  ADS  Google Scholar 

  5. Hinze, E., Will, G. & Cemic, L. Phys. Earth planet. Inter. 25, 245–254 (1981).

    Article  CAS  ADS  Google Scholar 

  6. Nell, J., Wood B. J. & Mason T. O. Am. Miner. 84, 339–351 (1989).

    Google Scholar 

  7. Iyengar, G. N. K. & Alcock, C. B. Phil. Mag. 21, 293–304 (1970).

    Article  CAS  ADS  Google Scholar 

  8. Chen, W-K. & Peterson, N. L. J. Phys. Chem. Solids 41, 335–339 (1980).

    Article  CAS  ADS  Google Scholar 

  9. Mao, H. K. Yb. Carnegie Inst. Wash. 72, 554–557 (1973).

    Google Scholar 

  10. Li, X. & Jeanloz, R. J. geophys. Res. 95, 21609–21612 (1990).

    Article  CAS  ADS  Google Scholar 

  11. Brynestad, J. & Flood, H. Elektrochem. Ber. Bunsenges. Phys. Chem. 62, 953–958 (1958).

    CAS  Google Scholar 

  12. Valet, P.-M., Pluschkell, W. & Engell, H.-J. Arch. Eisenhüttenwes. 46, 383–388 (1975).

    Article  CAS  Google Scholar 

  13. Gartstein, E., Cohen, J. B. & Mason, T. O. J. Phys. Chem. Solids 47, 775–781 (1986).

    Article  CAS  ADS  Google Scholar 

  14. Hirsch, L. M. & Shankland, T. J. J. geophys. Res. 96, 385–403 (1991).

    Article  CAS  ADS  Google Scholar 

  15. Chaikin, P. M. & Beni, G. Phys. Rev. B13, 647–651 (1976).

    Article  CAS  ADS  Google Scholar 

  16. Wu, C. C. & Mason, T. O. J. Am. Ceram. Soc. 64, 520–522 (1981).

    Article  CAS  Google Scholar 

  17. Poirier, J-P & Peyronneau, J. Proc. US-Japan High Pressure Miner. Phys. Symp. (in the press).

  18. Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Science 248, 337–345 (1990).

    Article  CAS  ADS  Google Scholar 

  19. Webman, I., Jortner, J. & Cohen, M. H. Phys. Rev. B14, 4737–4740 (1976).

    Article  ADS  Google Scholar 

  20. Sempolinski, D. R. & Kingery, W. D. J. Am. Ceram. Soc. 63, 664–669 (1980).

    Article  CAS  Google Scholar 

  21. Ito, K. & Kennedy, G. C. Am. J. Sci. 265, 519–538 (1967).

    Article  CAS  ADS  Google Scholar 

  22. Nehru, C. E. & Wyllie, P. J. J. Geol. 83, 455–471 (1975).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, B., Nell, J. High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe)O. Nature 351, 309–311 (1991). https://doi.org/10.1038/351309a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351309a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing