Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes

Abstract

APPARENTLY benign silicic domes or lava flows can travel for several kilometres and then suddenly collapse to generate pyroclastic phenomena capable of causing widespread destruction, as happened recently at Mount Unzen in Japan1. Two sources have been proposed for the energy that propels such 'Peléan' or 'Merapi'-type2 pyroclastic flows: gravitational col-lapse (supplemented by heating and expansion of air) and sudden expansion of pressurized gases from inside the lava flow. If gravity controls the energy transfer, then areas likely to be affected can be predicted on the basis of topography3, and the resulting deposits will bear a simple relationship to the part of the lava flow from which they issued. But if gas pressure adds a significant contribution, hazard assessment becomes more difficult because gas decompression adds velocities beyond those acquired by gravitational forces, putting much larger areas at risk and forming pyroclastic deposits that are much more difficult to relate to their source. Here we estimate the initial velocities of pyroclastic flows generated by dome disintegration for a range of lava compositions and volatile contents, and offer a conceptual framework for correlating the dynamics of dome-front collapse with the resulting sediment record. Our results indicate that explosive decompression at distal portions of domes can cause velocities comparable to gravitational collapse, especially in cases where volatiles become locally concentrated above equilibrium values.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nakada, S. Fujii, T. J. Volcan. geotherm. Res. 54, 319–334 (1993).

    Article  ADS  Google Scholar 

  2. Macdonald, G. A. Volcanoes (Prentice Hall, Englewood Cliffs, New Jersey, 1972).

    Google Scholar 

  3. Malin, M. C. & Sheridan, M. F. Science 217, 637–639 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Smith, R. L. Geol. Soc. Am. Bull. 71, 795–842 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  5. Sparks, R. S. J., Wilson, L. & Hulme, G. J. geophys. Res. 83, 1727–1739 (1978).

    Article  ADS  Google Scholar 

  6. Woods, A. W. & Caulfield, C. P. J. geophys. Res. 97, 6699–6712 (1992).

    Article  ADS  Google Scholar 

  7. Rose, W. I. Jr, Pearson, T. & Bonis, S. Bull. Volcanol. 40, 53–70 (1976).

    Article  ADS  Google Scholar 

  8. Sato, H., Fujii, T. & Nakada, S. Nature 360, 664–666 (1992).

    Article  ADS  Google Scholar 

  9. Stith, J. L., Hobbs, P. V. & Radke, L. F. Geophys. Res. Lett. 4, 259–262 (1977).

    Article  ADS  Google Scholar 

  10. Mellors, R. A., Waitt, R. B. & Swanson, D. A. Bull. Volcanol. 50, 14–25 (1988).

    Article  ADS  Google Scholar 

  11. Fink, J. H. & Manley, C. R. IAVCEI Proc. Volcanol. 1, 169–179 (1989).

    Article  Google Scholar 

  12. Bardintzeff, J. M. J. Geodynam. 3, 303–325 (1985).

    Article  ADS  Google Scholar 

  13. Kieffer, S. W. U. S. Geol. Surv. Prof. Pap. 1250, 379–400 (1982).

    Google Scholar 

  14. Sousa J. & Voight, B. Geotechnique 41 (4), 515–538 (1991).

    Article  Google Scholar 

  15. Fink, J. H. & Manley, C. R. Geol. Soc. Am. spec. Pap. 212, 77–88 (1987).

    Google Scholar 

  16. McBirney, A. R. & Murase, T. A. Rev. Earth planet. Sci. 12, 337–357 (1984).

    Article  ADS  Google Scholar 

  17. Griffiths, R. W. & Fink, J. H. J. Fluid Mech. 252, 667–702 (1993).

    Article  ADS  Google Scholar 

  18. Iverson R. IAVCEI Proc. Volcanol. 2, 47–69 (1990).

    Article  Google Scholar 

  19. Williams, H. & McBirney, A. R. Volcanology (Freeman Cooper, San Francisco, 1979).

    Google Scholar 

  20. Anderson, S. W. & Fink, J. H. IAVCEI Proc. Volcanol. 2, 25–46 (1990).

    Article  Google Scholar 

  21. Anderson, S. W., Fink, J. H., & Rose, W. I. Jr Eos 71, 1720 (1990).

    Google Scholar 

  22. Eichelberger, J. C., Carrigan, C. R., Westrich, H. R. & Price, R. H. Nature 323, 598–602 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Manley, C. R. & Fink, J. H. Geology 15, 549–552 (1987).

    Article  ADS  Google Scholar 

  24. Westrich, H. R., Stockman, H. W. & Eichelberger, J. C. J. geophys. Res. 93, 6503–6511 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Westrich, H. R. & Eichelberger, J. C. N. M. Bur. Mines Min. Res. Bull. 131, 206–291 (1989).

    Google Scholar 

  26. Manley, C. R. J. Volcan. geotherm. Res. 18, 224–233 (1992).

    Google Scholar 

  27. Dzurisin, D., Denlinger, R. P. & Rosenbaum, J. G. J. geophys. Res. 95, 2763–2780 (1990).

    Article  ADS  Google Scholar 

  28. Wallis, G. B. One-dimensional Two-Phase Flow (McGraw Hill, New York, 1969).

    Google Scholar 

  29. Zucrow, M. J. & Hoffman, J. D. Gas Dynamics, Vol. 1 (Wiley, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J., Kieffer, S. Estimate of pyroclastic flow velocities resulting from explosive decompression of lava domes. Nature 363, 612–615 (1993). https://doi.org/10.1038/363612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing