Skip to main content
Log in

Lu–Hf Isotope-Geochemical Zircon Systematics and Genesis of the Neoarchean Alkaline Granites in the Keivy Megablock, Kola Peninsula

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—Alkaline and subalkaline granites of the Keivy megablock belong to the potassic alkali-calcic ferroan rocks enriched in large-ion lithophile, high-field strength and rare-earth elements. Based on these criteria, they correspond to A2-type granites (Eby, 1992). The granites have elevated Y/Nb (1.9–2.5) and Yb/Ta (3.4–3.7) ratios typical of crustally derived granites. The initial 176Hf/177Hf ratios in the central parts of zircon crystals vary within 0.281004–0.281175 at εHf(T) ranging from –2.89 to 3.79. It is supposed that the underplating of high-temperature mafic melts caused melting of metasomatically altered lower-crustal rocks and formation of palingenetic lower-crustal melts, which during subsequent ascent in the upper crust experienced fractional crystallization to more siliceous subalkaline and alkaline melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. L. Anderson and J. Morrison, “The role of anorogenic granites in the Proterozoic crustal development of North America,” Proterozoic Crustal Evolution, Ed. by K. C. Condie (Elsevier, 1992), pp. 263–299.

    Google Scholar 

  2. Yu. A. Balashov and S. G. Skublov, “Contrasting geochemistry of Magmatic and secondary zircons,” Geochem. Int. 49 (11), 594–604 (2011).

    Article  Google Scholar 

  3. I. D. Batieva, Petrology of Alkaline Granitoids of the Kola Peninsula (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  4. I. D. Batieva and I. V. Bel’kov, Sakharjok Alkaline Massif, its Constituent Rocks, and Minerals (Kol’sk Fil. Akad. Nauk SSSR, Apatity, 1984) [in Russian].

    Google Scholar 

  5. T. B. Bayanova, Age of the Reference Geological Complexes of the Kola Region and Duration of Magmatic Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  6. A. P. Belolipetskii, V. G. Gaskelberg, L. A. Gakselberg, E. S. Antonyuk, and Yu. I. Il’in, Geology and Geochemistry of the Early Precambrian Metamorphic Complexes of the Kola Peninsula (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  7. E. A. Belousova, W. L. Griffin, S. Y. O’Reilly, and N. I. Fisher, “Igneous zircon: trace element composition as an indicator of source rock type,” Contrib. Mineral. Petrol. 143, 602–622 (2002).

    Article  Google Scholar 

  8. J. Blichert-Toft, N. T. Arndt, and J. N. Ludden, “Precambrian alkaline magmatism,” Lithos 37, 97–111 (1996).

    Article  Google Scholar 

  9. B. Bonin, “Do coeval mafic and felsic magmas in post–collisional to within plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review,” Lithos 78, 1–24 (2004).

    Article  Google Scholar 

  10. B. Bonin, “A-type granites and related ricks: evolution of a concept, problems and prospects,” Lithos 97 (1–2), 1–29 (2007).

    Article  Google Scholar 

  11. A. Bouvier, J. D. Vervoort, and P. J. Pattchett, “The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Article  Google Scholar 

  12. M. T. Cabero, S. Mecoleta, and F. J. Lopez–Moro, “OPTIMAS-BA: A Microsoft Excel workbook to optimise the mass–balance modelling applied to magmatic differentiation processes and subsolidus overprints,” Comp. Geosci. 42, 206–211 (2012).

    Article  Google Scholar 

  13. R. Dall’Agnol and D. C. Oliveira, “Oxidized, magnetite-series, rapakivi–type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites,” Lithos 93, 215–233 (2007).

    Article  Google Scholar 

  14. N. L. Dobretsov, Global Petrological Processes (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  15. G. N. Eby, “The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis,” Lithos 26, 115–134 (1990).

    Article  Google Scholar 

  16. G. N. Eby, “Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implication,” Geology 20, 641–644 (1992).

    Article  Google Scholar 

  17. C. D. Frost and B. R. Frost, “Reduced rapakivi type granites: the tholeiitic connection,” Geology 25, 647–650 (1997).

    Article  Google Scholar 

  18. C. D. Frost and B. R. Frost, “On ferroan (A-type) granitoids: their compositional variability and modes of origin,” J. Petrol. 52, 39–53 (2011).

    Article  Google Scholar 

  19. Geological Map of the Kola Region, Northeastern Baltic Shield on a Scale 1 : 500 000, Ed. by F. P. Mitrofanov (KNTs RAN, Apatity, 1996) [in Russian].

  20. W. L. Griffin, X. Wang, S. E. Jackson, N. J. Pearson, S. Y. O’Reilly, X. Xu, and X. Zhou, “Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes,” Lithos 61, 237–269 (2002).

    Article  Google Scholar 

  21. W. L. Griffin, N. J. Pearson, E. Belousova, S. E. Jackson, S. Y. O’Reilly, E. van Achterberg, and S. R. Shee, “The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites,” Geochim. Cosmochim. Acta 64, 133–147 (2000).

    Article  Google Scholar 

  22. M. Guitreau, J. Blichert-Toft, H. Martin, S. J. Mojzsis, and F. Albarede, “Hafnium isotope evidence from Archean granitic rocks for deep–mantle origin of continental crust,” Earth Planet. Sci. Lett. 337–338, 211–223 (2012).

    Article  Google Scholar 

  23. J. M. Hanchar and E. B. Watson, “Zircon saturation thermometry,” Rev. Mineral., Geochem. 53, 89–112 (2003).

    Article  Google Scholar 

  24. P. W. O. Hoskin and U. Schaltegger, “The composition of zircon and igneous and metamorphic petrogenesis,” Rev. Mineral., Geochim. 53, 27–62 (2003).

  25. S. Ishihara, “The granitoid series and mineralization,” Econ. Geol. 75th Anniversary volume, 458–484 (1981).

  26. A. I. S. Kemp and C. J. Hawkesworth, ”Granite perspectives on the generation and secular evolution of the continental crust,” Treasure of Geochem. 3, 349–410 (2003).

    Article  Google Scholar 

  27. P. D. Kempton, H. Downes, E. V. Sharkov, V. R. Vetrin, D. A. Ionov, D. A. Carswell, and A. Beard, “Petrology and geochemistry of xenoliths from the northern Baltic Shield: evidence of partial melting and metasomatism in the lower crust beneath an Archean terrane,” Lithos 36, 157–184 (1995).

    Article  Google Scholar 

  28. P. D. Kempton, H. Downes, L. A. Neymark, J. A. Wartho, R. E. Zartman, and E. V. Sharkov, “Garnet granulite xenoliths from the Northern Baltic Shield—the underplated lower crust of a Palaeoproterozoic large igneous province?,” J. Petrol. 42 (4), 731–763 (2001).

    Article  Google Scholar 

  29. S. Klemme, S. Prowatke, K. Hametner, and D. Gunther, “Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones,” Geochim. Cosmochim. Acta 69, 2361–2371 (2005).

    Article  Google Scholar 

  30. L. N. Kogarko, “Alkaline magmatism in the early history of the Earth,” Petrology 6 (3), 230–236 (1998).

    Google Scholar 

  31. M. Koreshkova, H. Downes, I. Millar, L. Levsky, A. Larionov, and S. Sergeev, “Geochronology of metamorphic events in the lower crust beneath NW Russia: a xenolith Hf isotope study,” J. Petrol. 58 (8), 1567–1590 (2017).

    Article  Google Scholar 

  32. I. V. Litvinenko, S. A. Ankudinov, L. P. Platonenkova, and Yu. A. Siparov, Deep Section of the Keivy Synclinorium. Geology and Deep Structure of the Eastern Baltic Shield (Nauka, Leningrad, 1968), pp. 104–110 [in Russian].

    Google Scholar 

  33. M. C. Loiselle and D. R. Wones, “Characteristics and origin of anorogenic granites,” Geol.Soc. of America Abstracts with Programs11, 468 (1979).

    Google Scholar 

  34. P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Geol. Soc. Am. Bull. 101, 635–643 (1989).

    Article  Google Scholar 

  35. M. V. Mints, V. N. Glaznev, A. N. Konilov, N. M. Kunina, A. P. Nikitichev, A. B. Ravesky, Yu. N. Sedykh, V. M. Stupak, and V. I. Fonarev, Early Precambrian of the Northeastern Baltic Shield: Paleogeodynamics, Structure, and Evolution of Continental Crust (Nauchnyi Mir, Moscow, 1996) [in Russian].

    Google Scholar 

  36. J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).

    Article  Google Scholar 

  37. D. Rubatto, “Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism,” Chem. Geol. 184, 123–138 (2002).

    Article  Google Scholar 

  38. R. L. Rudnick and S. Gao, “Composition of the continental crust,” The Crust Treasure on Geochemistry, Ed. by H. D. Holland and K. K. Turekian (Elsevier–Pergamon, Oxford, 2003), Vol. 3, 1–64. (2003).

    Google Scholar 

  39. T. Rushmer, “Experimental high–pressure granites: some appilcations to natural mafic xenolith suites and Archean granulite terranes,” Geology 21, 411–414 (1993).

    Article  Google Scholar 

  40. E. Scherer, C. Münker, and K. Mezger, “Calibration of the lutetium–hafnium clock,” Science 293, 683–687 (2001).

    Article  Google Scholar 

  41. P. J. Silvester, “Post–collisional strongly peraluminous granites,” Lithos 45, 29–44 (1998).

    Article  Google Scholar 

  42. S.–S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norrys, Geol. Soc. Spec. Publ. 42, 313–345 (1989).

  43. J. D. Vervoort and J. Blichert–Toft, “Evolution of depleted mantle: Hf evidence from juvenile rocks through time,” Geochim. Cosmochim. Acta 63 (3/4), 533–556 (1999).

    Article  Google Scholar 

  44. V. R. Vetrin “Duration of the Formation and Sources of the Granitoids of the Litsk – Araguba Complex, Kola Peninsula,” Geochem. Int. 52 (1), 33–45 (2014).

    Article  Google Scholar 

  45. V. R. Vetrin, “Geology and Geochemistry of Neoarchean subalkaline magmatism of the Keivy structure, Kola Peninsula,” Zap. Ross. Mineral. O-va 147 (3), 1–15 (2018a).

    Google Scholar 

  46. V. R. Vetrin, “Isotope–geochemical systematic (Sm–Nd, Lu–Hf) of the Neoarchean subalkaline and alkaline rocks of the Keivy structure, Kola Peninsula: age and genetic relations,” Zap. Ross. Minerl. O-va 147 (4), 1–13 (2018b).

    Google Scholar 

  47. V. R. Vetrin, and N. V. Rodionov, “Geology and geochronology of Neoarchean anorogenic magmatism of the Keivy structure, Kola Peninsula,” Petrology 17 (6), 537–600 (2009).

    Article  Google Scholar 

  48. V. R. Vetrin, I. L. Kamensky, T. B. Bayanova, M. Timmerman, B. V. Belyatskii, L. K. Levskii, and Yu. A. Balashov, “Melanocratic nodules in alkaline granites of the Ponoiskii massif, Kola Peninsula: a clue to petrogenesis,” Geochem. Int. 37, 1061–1072 (1999).

    Google Scholar 

  49. V. R. Vetrin, I. L. Kamenskii, and S. V. Ikorskii, “Juvenile helium in Archean enderbites and alkaline granites of the Kola Peninsula,” Geochem. Int. 41 (7), 631–636 (2003).

    Google Scholar 

  50. V. R. Vetrin, S. G. Skublov, Yu. A. Balashov, L. M. Lyalina, and N. V. Rodionova, “Time of formation and genesis of yttrium—zirconium mineralization of the Sakharjok massif, Kola Peninsula,” Zap. Ross. Mineral. O-va 143 (2), 1–22 (2014).

    Google Scholar 

  51. V. R. Vetrin, E. A. Belousova, and V. P. Chupin, “Trace Element Composition and Lu–Hf isotope systematics of zircon from plagiogneisses of the Kola Superdeep Well: contribution of a Paleoarchean crust in Mesoarchean metavolcanic rocks,” Geochem. Int. 54 (1), 92–111 (2016).

    Article  Google Scholar 

  52. V. R. Vetrin, E. A. Belousova, and A. A. Kremenetskii, “Lu–Hf isotope systematic of zircon from lower crustal xenoliths of the Belomorian mobile belt,” Zap. Ross. Mineral. O-va 146 (3), 1–16 (2017).

    Google Scholar 

  53. E. B. Watson, D. A. Wark, and J. B. Thomas, “Crystallization thermometers for zircon and rutile,” Contrib. Miner. Petrol. 151, 413–433 (2006).

    Article  Google Scholar 

  54. D. R. Wones, “Significance of the assemblage titanite+ magnetite +quartz in granitic rocks,” Am. Mineral. 74, 744–749 (1989).

    Google Scholar 

  55. A. Woolley, “Alkaline rocks and carbonatites of the World. Part 1,” North and South America (London British Museum, 1987).

    Google Scholar 

  56. Yang Xue–Ming, “Estimation of crystallization pressure of granite intrusions,” Lithos 286–287, 324–329 (2017).

    Article  Google Scholar 

  57. D. R. Zozulya, T. B. Bayanova, and P. N. Serov, “Age and isotopic geochemical characteristics of Archean carbonatites and alkaline rocks of the Baltic Shield,” Dokl. Earth Sci. 415 (3), 874–879 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Belousova (Macquarie University, Sydney, Australia) for the measurement of the Hf isotopic composition of zircon. O.M. Turkina (IGM SO RA, Novosibirsk), A.I. Slabunov (IG KarNTS RAN, Petrozavodsk), and anonymous reviewer are thanked for useful comments.

Funding

The studies were carried out in the framework of the State Task of the Geological Institute of the Kola Science Center (no. 0226-2019-0052 GI), with partial support by the Russian Foundation for Basic Research (project 16-05-00756а) and State Contract no. 13/17-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. R. Vetrin or A. A. Kremenetsky.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetrin, V.R., Kremenetsky, A.A. Lu–Hf Isotope-Geochemical Zircon Systematics and Genesis of the Neoarchean Alkaline Granites in the Keivy Megablock, Kola Peninsula. Geochem. Int. 58, 624–638 (2020). https://doi.org/10.1134/S0016702920060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702920060129

Keywords:

Navigation