Skip to main content
Log in

Genesis of kalsilite melilitite at Cupaello, Central Italy: Evidence from melt inclusions

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anders, E. and Grevesse, N., Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.

    Article  Google Scholar 

  • Andreeva I.A. Silicate, silicate–salt, and salt magmas of the Mushugai–Khuduk alkaline carbonatized complex, Southern Mongolia: melt inclusion data, Extended Abstract of Cand. Sci. (Geol.-Min.), Moscow: IGEM RAN, 2000.

    Google Scholar 

  • Bell, K., Castorina, F., Rosatelli, G., and Stoppa, F., Plume activity, magmatism, and the geodynamic evolution of the central Mediterranean, Ann. Geophys., 2006, vol. 49, no. 1, pp. 357–371.

    Google Scholar 

  • Bell, K., Lavecchia, G., and Rosatelli, G., Cenozoic Italian magmatism—isotope constraints for possible plume-related activity, J. S. Amer. Earth Sci., 2013, vol. 41, pp. 22–40. doi 10.1016/j.jsames.2012.10.005

    Article  Google Scholar 

  • Boari, E., Tommasini, S., Laurenzi, M.A., and Conticelli, S., Transition from ultrapotassic kamafugitic to sub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and 40Ar–39Ar age data from the Middle Latin Valley volcanic field, Roman magmatic province, Central Italy, J. Petrol., 2009, vol. 50, no. 7, pp. 1327–1357. doi 10.1093/petrology/egp003

    Article  Google Scholar 

  • Borodin, L.S., Glavneishie provintsii i formatsii shchelochnykh porod (Major Provinces and Associations of Alkaline Rocks), Moscow: Nauka, 1974.

    Google Scholar 

  • Carminati, E., Lustrino, M., and Doglioni, C., Geodynamic evolution of the central and western Mediterranean: tectonics vs igneous petrology constraints, Tectonophysics, 2012, vol. 579, pp. 173–192. doi 10.1016/j.tecto.2012.01.026

    Article  Google Scholar 

  • Castorina, F., Stoppa, F., Cundari, A., and Barbieri, M., An enriched mantle source for Italy’s melilitite–carbonatite association as inferred by its Nd-Sr isotope signature, Mineral. Mag., 2000, vol. 64, pp. 625–639. doi 10.1180/002646100549652

    Article  Google Scholar 

  • Conticelli, S., D’Antonio, M., Pinarelli, L., and Civetta, L., Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman province and southern Tuscany, Mineral. Petrol., 2002, vol. 74, pp. 223–252. doi 10.1007/s007100200004

    Article  Google Scholar 

  • Cundari, A. and Ferguson, A.K., Petrogenetic relationships between melilitite and lamproite in Roman comagmatic region: the lavas of S. Venanzo and Cupaello, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 343–357. doi 10.1007/BF00325103

    Article  Google Scholar 

  • Cundari, A., Role of subduction in the genesis of potassic basaltic rocks: a discussion paper on the unfashionable side of the role, Mineral. Petrograph. Acta, 1994, vol. 37, pp. 81–90.

    Google Scholar 

  • Dawson, J.B., Smith, J.V., and Steele, I.M., Combeite (Na2.33Ca1.74O0.12)Si3O9 from Oldoinyo Lengai, Tanzania, J. Geol., 1989, vol. 97, pp. 365–372.

    Google Scholar 

  • Deer W.A., Howie, R.A., and Zussman, J., Rock Forming Minerals. Vol. 2. Chain Silicates, London: Longmans, 1963.

    Google Scholar 

  • Deer W.A., Howie, R.A., and Zussman, J., Rock Forming Minerals. Vol. 4. Framework Silicates, London: Longmans, 1963.

    Google Scholar 

  • Foley, S. and Peccerillo, A., Potassic and ultrapotassic magmas and their origin, Lithos, 1992, vol. 28, pp. 181–185.

    Article  Google Scholar 

  • Foley, S., Venturelli, G., Green, D.H., and Toscani, L., The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models, Earth Sci. Rev., 1987, vol. 24, pp. 81–134.

    Article  Google Scholar 

  • Gasperini, D., Blichert-Toft, J., Bosch, D., et al., Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics, J. Geophys. Res., 2002, vol. 107, pp. 2367–2371. doi 10.1029/2001JB000418

    Article  Google Scholar 

  • Guarino, V., Wu, F.Y., Lustrino, M., et al., U–Pb ages, Sr–Nd-isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíbá igneous province, Brazil, Chem. Geol., 2013, vol. 353, pp. 65–82. doi 10.1016/j.chemgeo.2012.06.016

    Article  Google Scholar 

  • Hamilton, D.L. and Kjarsgaard, B.A., The immiscibility of silicate and carbonate liquids, S. Afr. J. Geol., 1993, vol. 96, pp. 139–142.

    Google Scholar 

  • Kostyuk, V.P., Panina, L.I., Zhidkov, A.Ya., et al., Kalievyi shchelochnoi magmatizm Baikalo-Stanovoi riftogennoi sistemy (Potassic Alkaline Magmatism of the Baikal–Stanovoy Rift System), Novosibirsk: Nauka, 1990.

    Google Scholar 

  • Laurenzi, M., Stoppa, F., and Villa, I., Eventi ignei monogenici e depositi piroclastici nel Distretto Ultra-Alcalino Umbro-laziale (ULUD): revisione, aggiornnamento e comparazione dei dati cronologici, Plinius, 1994, vol. 12, pp. 61–65.

    Google Scholar 

  • Lavecchia, G., Stoppa, F., and Creati, N., Carbonatites and kamafugites in Italy: mantle-derived rocks that challenge subduction, Ann. Geophys., 2006, vol. 49, no. 1, pp. 389–402.

    Google Scholar 

  • Lavecchia, G. and Bell, K., Magmatectonic zonation of Italy: a tool to understanding Mediterranean geodynamics, in Updates in Volcanology: a Comprehensive Approach to Volcanological Problems, Stoppa, F., Ed., Intech-Open Access Publisher, 2012, pp. 153–178.

    Google Scholar 

  • Martin, L.H.J., Schmidt, M.W., Mattisson, H.B., et al., Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite, Chem. Geol., 2012, vol. 320–321, pp. 96–112. doi 10.1016/j.chemgeo.2012.05.019

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 96–112.

    Article  Google Scholar 

  • Melluso, L., Lustrino, M., Ruberti, E., et al., Major- and trace-element composition of olivine perovskite, clinopyroxene, Cr–Fe–Ti oxides, phlogopites and host kamafugite and kimberlites Alto Paranaíbá, Brazil, Can. Mineral., 2008, vol. 46, pp. 19–40. doi 10.3749/canmin.46.1.19

    Article  Google Scholar 

  • Morimoto, N., Nomenclature of pyroxenes. Subcommittee on pyroxenes. Commission on new minerals and mineral names, Can. Mineral., 1989, vol. 27, pp. 143–156.

    Google Scholar 

  • Naumov, V.B., Kamenetsky, V.S., Thomas, R., et al., Inclusions of silicate and sulfate melts in chrome diopside from the Inagli Deposit, Yakutia, Russia, Geochem. Int. 2008, vol. 46, no. 6, pp. 554–564.

    Article  Google Scholar 

  • Nielsen, T.F.D., Solovova, I.P., and Veksler, I.V., Parental melts of melilitolite and origin of alkaline carbonatites: evidence from crystallised melt inclusions, Gardiner complex, Contrib. Mineral. Petrol., 1997, vol. 126, p. 331–344. doi 10.1007/s004100050254

    Article  Google Scholar 

  • Panina, L.I., Multiphase carbonate–salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia), Contrib. Mineral. Petrol., 2005, vol. 150, pp. 19–36.

    Article  Google Scholar 

  • Panina, L.I. and Usol’tseva, L.M., Alkaline high-Ca sulfate–carbonate melt inclusions in melilite–monticellite–olivine rocks from the Malomurunskii Alkaline Massif, Petrology, 1999, vol. 7, no. 6, pp. 610–625.

    Google Scholar 

  • Panina, L.I. and Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts, Geochem. Int., 2008, vol. 46, no. 5, pp. 448–464.

    Article  Google Scholar 

  • Panina, L.I., Sazonov, A.M., and Usol’tseva, L.M., Melilite- and monticellite-bearing rocks of the Krestovskaya Intrusion (northern Siberian Platform) and their genesis, Russ. Geol. Geophys., 2001, vol. 42, no. 9, pp. 1243–1263.

    Google Scholar 

  • Panina, L.I., Stoppa, F., and Usol’tseva, L.M., Genesis of melilitite rocks of Pian di Celle Volcano, Umbrian Kamafugite Province, Italy: evidence from melt inclusions in minerals, Petrology, 2003, vol. 11, no. 4, pp. 365–382.

    Google Scholar 

  • Panina, L.I., Nikolaeva, A.T., and Stoppa, F., Genesis of melilitolites from Colle Fabbri: inferences from melt inclusions, Mineral. Petrol., 2013, vol. 107, pp. 897–914. doi 10.1007/s00710-013-0268-4

    Article  Google Scholar 

  • Peccerillo, A., Potassic and ultrapotassic rocks: compositional characteristics, petrogenesis, and geological significance, Episodes, 1992, vol. 15, no. 4, pp. 243–251.

    Google Scholar 

  • Peccerillo, A., Plio–Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics, Heidelberg: Springer, 2005.

    Google Scholar 

  • Roedder, E., A reconnaissance of liquidus relations in the system K2O · 2SiO2–FeO–SiO2, Am. J. Sci., 1952, Bowen vol. Part 2, pp. 435–456.

    Google Scholar 

  • Samoylov, V.S., Kovalenko, V.I., Naumov, V.B., et al., Immiscibility of silicate and salt melts in the formation of the Mushugai-Kuduk alkali complex, South Mongolia, Geochem. Int., 1989, vol. 26, no. 5, pp. 61–72.

    Google Scholar 

  • Schmidt, K.H., Bottazzi, P., Vannucci, R., and Mengel, K., Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt, Earth Planet Sci. Lett., 1999, vol. 168, pp. 287–299. doi 10.1016/S0012-821X(99)00056-4

    Article  Google Scholar 

  • Serri, G., Neogene–Quaternary magmatic activity and its geodynamic implications in the central Mediterranean region, Geodynamics, 1997, vol. 40, pp. 681–703. doi 10.4401/ag-3896

    Google Scholar 

  • Sgarbi, P.B.A. and Gaspar, J.C., Geochemistry of Santo Antônio da Barra kamafugites, Goiás, Brazil, J. S. Amer. Earth Sci., 2002, vol. 14, p. 889–901. doi 10.1016/S0895-9811(01)00079-7

    Article  Google Scholar 

  • Sharygin, V.V., Kamenetsky, V.S., Zaitsev, A.N., and Kamenetsky, M.B., Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai volcano, Tanzania: melt inclusion study, Lithos, 2012, vol. 152, pp. 23–39. doi 10.1016/j.lithos.2012.01.021

    Article  Google Scholar 

  • Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 209–220.

    Google Scholar 

  • Solovova, I.P., Girnis, A.V., Ganeev, I.I., et al., Conditions of generation and crystallization of high-potassium magmas, in Lamproity (Lamproites), Bogatikov, O.A. and Kononova, V.A., Ed., Moscow: Nauka, 1991, pp. 218–276.

    Google Scholar 

  • Solovova, I.P., Girnis, A.V., Kogarko, L.N., et al., Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy, Lithos, 2005, vol. 85, pp. 113–128. doi 10.1016/j.lithos.2005.03.022

    Article  Google Scholar 

  • Solovova, I.P., Onenstetter, D., and Girnis, A.V., Melt inclusions in olivine from the boninites of New Caledonia: postentrapment melt modification and estimation of primary magma compositions, Petrology, 2012, vol. 20, no. 6, pp. 529–544.

    Article  Google Scholar 

  • Stoppa, F. and Cundari, A., A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance, Contrib. Mineral. Petrol., 1995, vol. 122, pp. 275–288. doi 10.1007/s004100050127

    Article  Google Scholar 

  • Stoppa, F., Cundari, A., Rosatelli, A., and Woolley, A.R., Leucite melilitolites in Italy: genetic aspects and relationships with associated alkaline rocks and carbonatites, Period. Mineral., 2003, vol. 72, pp. 223–251.

    Google Scholar 

  • Stoppa, F. and Lavecchia, G., Late Pleistocene ultra-alkaline magmatic activity in the Umbria–Latium region (Italy): an overview, J. Volcanol. Geotherm. Res., 1992, vol. 52, pp. 277–293. doi 10.1016/0377-0273(92)90049-J

    Article  Google Scholar 

  • Stoppa, F. and Schiazza, M., An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features, J. S. Amer. Earth Sci., 2013, vol. 41, pp. 140–159. doi 10.1016/j.jsames.2012.10.004

    Article  Google Scholar 

  • Stoppa, F. and Sharygin, V.V., Melilitolite intrusion and pelite digestion by high temperature kamafugitic magma at Colle Fabbri, Spoleto, Italy, Lithos, 2009, vol. 112, pp. 306–320. doi 10.1016/j.lithos.2009.03.001

    Article  Google Scholar 

  • Stoppa, F., Sharygin, V.V., and Cundari, A., New mineral data from the kamafugite–carbonatite association: the melilitolite from Pian di Celle, Italy, Mineral. Petrol., 1997, vol. 61, pp. 27–45. doi 10.1007/BF01172476

    Article  Google Scholar 

  • Suk, N.I., Experimental investigation of carbonate–silicate liquid immiscibility with applications to the formation of barium–strontium carbonatites, Petrology, 2003, vol. 11, no. 4, pp. 400–405.

    Google Scholar 

  • Turi, B., Taylor, H.P., and Ferrara, G., A criticism of the Holm–Munksgaard oxygen and strontium isotope study of the Vulsinian district, Central Italy, Earth Planet. Sci. Lett., 1986, vol. 78, pp. 447–453.

    Article  Google Scholar 

  • Veksler, I.V., Dorfman, A.M., Dulski, P., et al., Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite, Geochim. Cosmochim. Acta, 2012, vol. 79, pp. 20–40.

    Article  Google Scholar 

  • Yoder, H.S. and Tilley, C.E., Origin of basalt magmas: an experimental study of natural and synthetic rock system, J. Petrol., 1962, vol. 3, pp. 342–532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Isakova.

Additional information

Original Russian Text © A.T. Isakova, L.I. Panina, F. Stoppa, 2017, published in Petrologiya, 2017, Vol. 25, No. 4, pp. 433–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakova, A.T., Panina, L.I. & Stoppa, F. Genesis of kalsilite melilitite at Cupaello, Central Italy: Evidence from melt inclusions. Petrology 25, 433–447 (2017). https://doi.org/10.1134/S0869591117040038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117040038

Navigation