Skip to main content
Log in

Structure and Composition Effects on the Oxygen Isotope Fractionation in Silicate Melts

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anfilogov, V.N., Bykov, V.N., and Osipov, A.A., Silikatnye rasplavy (Silicate Melts), Moscow: Nauka, 2005.

    Google Scholar 

  • Appora, I., Eiler, J.M., Matthews, A., and Stolper, E.M., Experimental determination of oxygen isotope fractionations between CO2 vapor and soda–melilite melt, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 459–471.

    Article  Google Scholar 

  • Ariskin, A.A. and Polyakov, V.B., Simulation of molecular mass distributions and evaluation of O2–concentrations in polymerized silicate melts, Geochem. Int., 2008, vol. 46, no. 5, pp. 429–447.

    Article  Google Scholar 

  • Bigeleisen, J. and Mayer, M.G., Calculation of equilibrium constants for isotope exchange reactions, J. Chem. Phys., 1947, vol. 15, pp. 261–267.

    Article  Google Scholar 

  • Borisov, A., Loop technique: dynamic of metal/melt equilibration, Mineral. Petrol., 2001, vol. 71, pp. 87–94.

    Article  Google Scholar 

  • Borisov, A.A. and Dubinina, E.O., Effect of network-forming cations on the oxygen isotope fractionation between silicate melts: experimental study at 1400–1570oC, Petrology, 2014, vol. 22, no. 4, pp. 359–380.

    Article  Google Scholar 

  • Borisov, A., Behrens, H., and Holtz, F., The effect of titanium and phosphorus on ferric/ferrous ratio in silicate melts: an experimental study, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 1577–1591.

    Article  Google Scholar 

  • Borisov, A., Behrens, H., and Holtz, F., Effects of melt composition on Fe3+/Fe2+ in silicate melts: a step to model ferric/ferrous ratio in multicomponent systems, Contrib. Mineral. Petrol., 2015, vol. 169.

  • Borisov, A., Behrens, H., and Holtz, F., Effects of strong network modifiers on Fe3+/Fe2+ in silicate melts: an experimental study, Contrib. Mineral. Petrol., 2017, vol. 172.

  • Bucholz, C.E., Jagoutz, O., Van Tongeren, J.A., et al., Oxygen isotope trajectories of crystallizing melts: insights from modeling and the plutonic record, Geochim. Cosmochim. Acta, 2017, vol. 207, pp. 154–184.

    Article  Google Scholar 

  • Canil, D. and Muehlenbachs, K., Oxygen diffusion in an Fe-rich basalt melt, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 2947–2951.

    Article  Google Scholar 

  • Chacko, T., Cole, D.R., and Horita, J., Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems, Rev. Mineral., 2001, vol. 43, pp. 1–81.

    Article  Google Scholar 

  • Clayton, R.N. and Kieffer, S.W., Oxygen isotope thermometer calibrations, Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Taylor, H.P., Jr, O’Neil, J.R., Kaplan, I.R., Eds., Geochem. Soc. Spec. Publ., 1991, no. 3, pp. 3–10.

    Google Scholar 

  • Coplen, T.B., Reporting of stable hydrogen, carbon, and oxygen isotopic abundances, Pure Appl. Chem., 1994, vol. 66, pp. 273–276.

    Article  Google Scholar 

  • Dalou, C., Le Losq, C., and Mysen, B.O., In situ study of the fractionation of hydrogen isotopes between aluminosilicate melts and coexisting aqueous fluids at high pressure and high temperature: implications for the dD in magmatic processes, Earth Planet. Sci. Lett., 2015, vol. 426, pp. 158–166.

    Article  Google Scholar 

  • Duffy, J.A., A review of optical basicity and its applications to oxidic systems, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 3961–3970.

    Article  Google Scholar 

  • Dunn, T., Oxygen diffusion in three silicate melts along the join diopside–anorthite, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2293–2299.

    Article  Google Scholar 

  • Eiler, J.M., Oxygen isotope variations of basaltic lavas and upper mantle rocks, Stable Isotope Geochemistry, Valley, J.W. and Cole, D.R., Eds., Rev. Mineral, 2001, vol. 43, pp. 319–364.

    Article  Google Scholar 

  • Esin, O.A. Polymineral model of melted silicates, in Solutions. Melts: Results of Science and Technique, tMoscow: VINITI, 1975, vol. 2, pp. 76–107.

    Google Scholar 

  • Fincham, C.J.B. and Richardson, F.D., The behavior of sulfur in silicate and aluminate melts, Proc. R. Soc. London: Ser. A, 1954, vol. 223.

  • Garlick, G.D., Oxygen isotope fractionation in magmatic rocks, Earth Planet. Sci. Lett., 1966, vol. 1, pp. 361–368.

    Article  Google Scholar 

  • Hao, X. and Wang, X., A new sulfide capacity model for CaO–Al2O3–SiO2–MgO slags based on corrected optical basicity, Steel Res. Intern., 2017, vol. 87, pp. 359–363.

    Article  Google Scholar 

  • Hess, P.C., Polymer model of silicate melts, Geochim. Cosmochim. Acta, 1971, vol. 36, pp. 289–306.

    Article  Google Scholar 

  • Kroopnick, P. and Craig, H., Atmospheric oxygen: isotopic composition and solubility fractionation, Science, 1972, vol. 175, pp. 54–55.

    Article  Google Scholar 

  • Kyser, T.K., Lesher, C.E., and Walker, D., The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids, Contrib. Mineral. Petrol., 1998, vol. 133, pp. 373–381.

    Article  Google Scholar 

  • Labidi, J., Shahar, A., Le Losq, C., et al. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation, Geochim. Cosmochim. Acta, 2016, vol. 175, pp. 181–194.

    Article  Google Scholar 

  • Lesher, C.E., Self-diffusion in silicate melts: theory, observations and applications to magmatic systems, Rev. Mineral. Geochem., 2010, vol. 72, pp. 269–309.

    Article  Google Scholar 

  • Lester, G.W., Kyser, T.K., and Clark, A.H., Oxygen isotope partitioning between immiscible silicate melts with H2O, P and S, Geochim. Cosmochim. Acta, 2013, vol. 109, pp. 306–311.

    Article  Google Scholar 

  • Le Losq, C., Mysen, B.O., and Cody, G.D., Intramolecular fractionation of hydrogen isotopes in silicate quenched melts, Geochem. Persp. Lett., 2016, vol. 2, pp. 87–94.

    Article  Google Scholar 

  • Masson, C.R., Ionic equilibria in liquid silicates, J. Am. Ceram. Soc., 1968, vol. 51, pp. 134–143.

    Article  Google Scholar 

  • Masson, C.R., Smith, I.B., and Whiteway, S.G., Activities and ionic distributions in liquid silicates: application of polymer theory, Can. J. Chem., 1970, vol. 48, pp. 1456–1464.

    Article  Google Scholar 

  • Matthews, A., Palin, J.M., Epstein, S., and Stolper, E.M., Experimental study of 18O/16O partitioning between crystalline albite, albitic glass and CO2 gas, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 5255–5266.

    Article  Google Scholar 

  • Mills, K.C., The influence of structure on the physicochemical properties of slags, ISIJ Int., 1993, vol. 33, pp. 148–155.

    Article  Google Scholar 

  • Moretti, R., Polymerisation, basicity, oxidation state and their role in ionic modelling of silicate melts, Ann. Geophys., 2005, vol. 48, pp. 583–607.

    Google Scholar 

  • Muehlenbachs, K. and Kushiro, I., Oxygen isotope exchange and equilibrium of silicates with CO2 and O2, Carnegie Inst. Wash. Yearbook, 1974, vol. 73, pp. 232–236.

    Google Scholar 

  • Mungall, J.E., Empirical models relating viscosity and tracer diffusion in magmatic silicate melts, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 125–143.

    Article  Google Scholar 

  • Mysen, B.O., Aluminosilicate melts: structure, composition and temperature, Contrib. Mineral. Petrol., 1997, vol. 127, pp. 104–118.

    Article  Google Scholar 

  • Mysen, B.O., Hydrogen isotope fractionation between coexisting hydrous melt and silicate-saturated aqueous fluid: an experimental study in situ at high pressure and temperature, Am. Mineral., 2013, vol. 98, pp. 376–386.

    Article  Google Scholar 

  • Mysen, B.O. and Richet, P., Silicate Glasses and Melts: Properties and Structure, Amsterdam: Elsevier, 2005.

    Google Scholar 

  • Mysen, B.O. and Fogel, M.L., Nitrogen and hydrogen isotope compositions and solubility in silicate melts in equilibrium with reduced (N + H)-bearing fluids at high pressure and temperature: effects of melt structure, Am. Mineral., 2010, vol. 95, pp. 987–999.

    Article  Google Scholar 

  • Mysen, B.O., Virgo, D., and Seifert, F.A., Relationships between properties and structure of aluminosilicate melts, Am. Mineral., 1985, vol. 70, pp. 88–105.

    Google Scholar 

  • Palin, J.M., Epstein, S., and Stolper, E., Oxygen isotope partitioning between rhyolitic glass/melt and CO2: an experimental study at 550–950°C and 1 bar, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 1963–1973.

    Article  Google Scholar 

  • Qin, T., Wu, F., Wu, Z., and Huang, F., First principles calculations of equilibrium fractionation of O and Si isotopes in quartz, albite, anorthite and zircon, Contrib. Mineral. Petrol., 2016, vol. 171, p. 91.

    Article  Google Scholar 

  • Schuessler, J.A., Botcharnikov, R.E., Behrens, H., et al., Oxidation state of iron in hydrous phono-tephritic melts, Am. Mineral., 2008, vol. 93, pp. 1493–1504.

    Article  Google Scholar 

  • Sharp, Z.D., A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1353–1357.

    Article  Google Scholar 

  • Stolper, E. and Epstein, S., An experimental study of oxygen isotope partitioning between silica glass and CO2 vapor, Stable Isotope Geochemistry: A Tribute to Samuel Epstein, Taylor, H.P., Jr, O’Neil, J.R, and Kaplan, I.R., Eds., Geochem. Soc. Spec. Publ., 1991, vol. 3, pp. 35–51.

    Google Scholar 

  • Toop, G.W. and Samis, C.S., Activities of ions in silicate melts, Transactions of the Metallurgical Society of America, 1962, vol. 224, pp. 878–887.

    Google Scholar 

  • Valley, J.W., Kitchen, N., Kohn, M.J., et al., UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5223–5231.

    Article  Google Scholar 

  • Wang, Y., Cody, S.X., Foustoukos, D., et al., Very large differences in intramolecular D–H partitioning in hydrated silicate melts synthesized at upper mantle pressures and temperatures, Am. Mineral., 2015, vol. 100, pp. 1182–1189.

    Article  Google Scholar 

  • Wendlandt, R.F., Oxygen diffusion in basalt and andesite melts: experimental results and discussion of chemical versus tracer diffusion, Contrib. Mineral. Petrol., 1991, vol. 108, pp. 463–471.

    Article  Google Scholar 

  • Zhao, Z.F. and Zheng, Y.F., Calculation of oxygen isotope fractionation in magmatic rocks, Chem. Geol., 2003, vol. 193, pp. 59–80.

    Article  Google Scholar 

  • Zheng, Y.F., Calculation of oxygen isotope fractionation in metal oxides, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 2299–2307.

    Article  Google Scholar 

  • Zheng, Y.F., Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 1079–1091.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. O. Dubinina.

Additional information

Original Russian Text © E.O. Dubinina, A.A. Borisov, 2018, published in Petrologiya, 2018, Vol. 26, No. 4, pp. 426–441.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinina, E.O., Borisov, A.A. Structure and Composition Effects on the Oxygen Isotope Fractionation in Silicate Melts. Petrology 26, 414–427 (2018). https://doi.org/10.1134/S0869591118040021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118040021

Keywords

Navigation