Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-20T01:14:09.486Z Has data issue: false hasContentIssue false

Effects of acid mine drainage on clay minerals suspended in the Tinto River (Río Tinto, Spain). An experimental approach

Published online by Cambridge University Press:  09 July 2018

E. Galan
Affiliation:
Dpto. de Cristalografía y Mineralogía, Facultad de Química, Universidad de Sevilla, Spain
M. I. Carretero
Affiliation:
Dpto. de Cristalografía y Mineralogía, Facultad de Química, Universidad de Sevilla, Spain
J . C. Fernandez-Caliani
Affiliation:
Dpto. de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, Spain

Abstract

The Tinto river is one of the most polluted stream environments in the world, as a result of both acid mine drainage and natural acid rock drainage. Two representative samples from the phyllosilicate-rich rocks exposed in the drainage basin (Palaeozoic chlorite-bearing slates and Miocene smectite-rich marls) were treated with acid river water (pH = 2.2) for different times to constrain the effects of extreme hydrogeochemical conditions on clay mineral stability. Illite and kaolinite did not show appreciable variations in their crystal chemistry parameters upon treatment. Chlorite underwent an incipient chemical degradation evidenced by the progressive loss of Fe in octahedral positions coupled with a shortening of the b unit-cell parameter, although no weathering products of chlorite were observed. Smectite and calcite were rapidly and fully dissolved thus neutralizing the water acidity, and subsequently Fe and Al oxy-hydroxides and opaline silica precipitated from the aqueous solution, together with a neoformed amorphous silicate phase largely enriched in Al and Mg.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1972) Determination of chlorite composition by X-ray spacings and intensities. Clays Clay Miner. 20, 381388.Google Scholar
Bain, D.C. (1972) Oxidation of chlorites in soil clays and effect on DTA curves. Nature Physical Sci. 238, 142143.CrossRefGoogle Scholar
Brindley, G.W. & Youell, R.F. (1951) A chemical determination of tetrahedral and octahedral aluminium ions in a silicate. Acta Cryst. 4, 495496.Google Scholar
Cabrera, F., Conde, B. & Flores, V. (1992) Heavy metals in the surface sediments of the tidal river Tinto (SW Spain). Fresenius Envir. Bull. 1, 400405.Google Scholar
Elbaz-Poulichet, F. & Leblanc, M. (1996) Transfer de métaux d'une province minière à l'océan par des fleuves acides (Rio Tinto, Espagne). CR. Acad. Sci. Paris, 322, 10471052.Google Scholar
Fernàndez-Caliani, J.C. & Galàn, E. (1997) Formation de yeso autigénico en la llanura de inundation del rio Tinto (Huelva). Implications paleoambientales. Geogaceta, 21, 103106.Google Scholar
Fernàndez-Caliani, J.C., Requena, A. & Galàn, E. (1996) Clay mineralogy and heavy metal content of suspended sediments in an extremely polluted environment: the Tinto river. Preliminary report. Pp. 218-220 in: Advances in Clay Minerals (Ortega-Huertas, M., López-Galindo, A. & Palomo, I., editors). Univ. Granada, Spain.Google Scholar
Foster, M.D. (1962) Interpretation of the composition and classification of the chlorites. U.S. Geological Survey Professional Paper, 414-A, 33 p.Google Scholar
Galàn, E. & Gonzalez, I. (1993) Contribution de la mineralogia de arcillas a la interpretation de la evolution paleogeogràfica del sector occidental de la Cuenca del Guadalquivir. Estudios Geol. 49, 261275.Google Scholar
Galàn, E., Requena, A. & Fernàndez-Caliani, J.C. (1996) Provenance and evolution of clay minerals in the Tinto river, SW Spain. Geol. Carpathica-Clays, 5, 6166.Google Scholar
García-Palomero, F. (1980) Caractères Geológicos y Relaciones Morfológicas y Genéticas de los Yacimientos del Anticlinal de Riotinto. Inst. Est. Onubenses, Huelva, 262 pp.Google Scholar
Kisch, H.J. (1991) mite cystallinity: Recommendations on sample preparation, X-ray diffraction settings and interlaboratory samples. J. Metam. Geol. 9, 665670.Google Scholar
Kittrick, J.A. (1971) Montmorillonite equilibria and the weathering environment. Soil Sci. Soc. Am. Proc. 35, 815820.Google Scholar
Konta, J. (1991) Phyllosilicate in rivers: Result of weathering, erosion, transportation and deposition. Pp. 23-44 in: Conferencias (Galàn, E. & Ortega-Huertas, M., editors). XI Reunion Sociedad Espanola de Arcillas.Google Scholar
Luca, V. & MacLachlan, D.J. (1992) Site occupancy in nontronite studied by acid dissolution and Mössbauer spectroscopy. Clays Clay Miner. 40, 17.Google Scholar
Makumbi, L. & Herbillon, A.J. (1972) Vermiculitization expérimentale d'une chlorite. Bull. Groupe Franc. Argiles, 24, 153165.Google Scholar
Martin Pozas, J.M. (1975) Anàlisis cuantitativo de fases cristalinas por difracción de rayos, X. In: Método de Debey-Scherrer (Saja, J., editor). ICE. Univ. Valladolid.Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction: Identification and Analysis of Clay Minerals, pp. 224-225. Oxford Univ. Press.Google Scholar
Murakanmi, T., Isobe, H., Sato, T. & Ohnuki, T. (1996) Weathering of chlorite in a quartz-chlorite schist: I. Mineralogical and chemical changes. Clays Clay Miner. 44, 244256.Google Scholar
Nelson, C.H. & Lamothe, P.J. (1993) Heavy metal anomalies in the Tinto and Odiel river and estuary system, Spain. Estuaries, 16, 496511.Google Scholar
Novak, I. & Cicel, B. (1978) Dissolution of smectites in hydrochloric acid: II. Dissolution rate as a function of crystallochemical composition. Clays Clay Miner. 26, 341344.CrossRefGoogle Scholar
Proust, D. (1982) Supergene alteration of metamorphic chlorite in an amphibolite from Massif Central, France. Clay Miner. 17, 159173.Google Scholar
Proust, D., Emery, J.P. & Beaufort, D. (1986) Supergene vermiculitization of a magnesian chlorite: Iron and magnesium removal processes. Clays Clay Miner. 34, 572580.Google Scholar
Requena, A., Clauss, F.L. & Fernàndez-Caliani, J.C. (1991) Mineralogia y aspectos geoquimicos de los sedimentos actuales del rio Odiel (Huelva). Cuad. Xeol. Laxe, 16, 135144.Google Scholar
Ross, G.J. (1969) Acid dissolution of chlorites: Release of magnesium, iron and aluminium and mode of acid attack. Clays Clay Miner. 17, 347354.Google Scholar
Ross, G.J. (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation. Nature, 255, 133134.Google Scholar
Ross, G.J. & Kodama, H. (1974) Experimental transformation of a chlorite into a vermiculite. Clays Clay Miner. 22, 205211.Google Scholar
Ross, G.J. & Kodama, H. (1976) Experimental alteration of a chlorite into a regularly interstratified chloritevermiculite by chemical oxidation. Clays Clay Miner. 24, 183190.Google Scholar
Schermerhórn, L.J.G. (1971) An outline stratigraphy of the Iberian Pyrite Belt. Bol. Geol. Min. 82, 239268.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Paper, 391-C, 39 pp.Google Scholar
Tkac, I., Komadel, P. & Millier, D. (1994) Acid-treated montmorillonites. A study by 29Si and 27A1 MAS NMR. Clay Miner. 29, 1119.Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence. Elsevier, Amsterdam.Google Scholar
Weast, R.C. (1989) Handbook of Chemistry and Physics. Pp. B207-B208, D50-D93. CRC Press, Boca Raton, Florida (70th edition).Google Scholar