Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T13:39:23.970Z Has data issue: false hasContentIssue false

Chemical and mineralogical characteristics of French green clays used for healing

Published online by Cambridge University Press:  01 January 2024

Lynda B. Williams*
Affiliation:
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
Shelley E. Haydel
Affiliation:
The Biodesign Institute Center for Infectious Diseases and Vaccinology and School of Life Sciences, Arizona State University, Tempe AZ, 85287 USA
Rossman F. Giese Jr.
Affiliation:
Department of Geology, 711 Natural Sciences Complex, The State University of New York, Buffalo, NY 14260 USA
Dennis D. Eberl
Affiliation:
U.S. Geological Survey, 3215 Marine St., Boulder, CO 80303, USA
*
* E-mail address of corresponding author: Lynda.Williams@asu.edu

Abstract

The worldwide emergence of infectious diseases, together with the increasing incidence of antibiotic-resistant bacteria, elevate the need to properly detect, prevent, and effectively treat these infections. The overuse and misuse of common antibiotics in recent decades stimulates the need to identify new inhibitory agents. Therefore, natural products like clays, that display antibacterial properties, are of particular interest.

The absorptive properties of clay minerals are well documented for healing skin and gastrointestinal ailments. However, the antibacterial properties of clays have received less scientific attention. French green clays have recently been shown to heal Buruli ulcer, a necrotic or ‘flesh-eating’ infection caused by Mycobacterium ulcerans. Assessing the antibacterial properties of these clays could provide an inexpensive treatment for Buruli ulcer and other skin infections.

Antimicrobial testing of the two clays on a broad-spectrum of bacterial pathogens showed that one clay promotes bacterial growth (possibly provoking a response from the natural immune system), while another kills bacteria or significantly inhibits bacterial growth. This paper compares the mineralogy and chemical composition of the two French green clays used in the treatment of Buruli ulcer.

Mineralogically, the two clays are dominated by 1Md illite and Fe-smectite. Comparing the chemistry of the clay minerals and exchangeable ions, we conclude that the chemistry of the clay, and the surface properties that affect pH and oxidation state, control the chemistry of the water used to moisten the clay poultices and contribute the critical antibacterial agent(s) that ultimately debilitate the bacteria.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aufreiter, S. Hancock, R.G.V. Mahaney, W.C. Stambolic-Robb, A. and Sanmugadas, K., 1997 Geochemistry and mineralogy of soils eaten by humans International Journal of Food Science and Nutrition> 48 293305 10.3109/09637489709028575.CrossRefGoogle Scholar
Bennett, P.C. Engel, A.S. Roberts, J.A., Maurice, P.A. and Warren, L.A., 2006 Counting and imaging bacteria on mineral surfaces Methods of Investigating Microbial-Mineral Interactions Chantilly, Virginia The Clay Minerals Society 3778.Google Scholar
Booth, I.R., 1985 Regulation of cytoplasmic pH in bacteria Microbiology Reviews> 49 359378.CrossRefGoogle ScholarPubMed
Brunet de Courssou, L. (2002) 5th WHO Advisory Group Meeting on Buruli Ulcer, Study Group Report on Buruli Ulcer Treatment with Clay. Geneva, Switzerland.Google Scholar
Carlin, A. Shi, W. Dey, S. and Rosen, B.P., 1995 The ars Operon of Escherichia coli confers arsenical and antimonial resistance Journal of Bacteriology> 177 981986 10.1128/jb.177.4.981-986.1995.CrossRefGoogle ScholarPubMed
Carretero, M.I., 2002 Clay minerals and their beneficial effects upon human health. A review Applied Clay Science> 21 155163 10.1016/S0169-1317(01)00085-0.CrossRefGoogle Scholar
Carretaro, M.I. Gomes, C.S.F. Tateo, F., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clays and human health Handbook of Clay Science Amsterdam Elsevier Ltd. 717741 10.1016/S1572-4352(05)01024-X.CrossRefGoogle Scholar
Cohn, C.A., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D.E., and Schoonen, M.A.A. (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions. Open Access: , 11 pp.CrossRefGoogle Scholar
Dendrinou-Samara, C. Alevizoupoulou, L. Iordanidis, L. Samaras, E. and Kessissoglou, D.P., 2002 15-MC-5 manganese metallacrowns hosting herbicide complexes. Structure and bioactivity Journal of Inorganic Biochemistry> 89 8996 10.1016/S0162-0134(01)00415-9.CrossRefGoogle ScholarPubMed
Diamond, J.M., 1999 Dirty eating for healthy living Nature> 400 120121 10.1038/22014.CrossRefGoogle ScholarPubMed
Dopson, M. Baker-Austin, C. Koppineedi, P.R. and Bond, P.L., 2003 Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms Microbiology> 1490 19591970 10.1099/mic.0.26296-0.CrossRefGoogle Scholar
Droy-Lefaix, M.T. Tateo, F., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clays and clay minerals as drugs Handbook of Clay Science Amsterdam Elsevier 743753 10.1016/S1572-4352(05)01025-1.CrossRefGoogle Scholar
Eberl, D.D. (2003) Users guide to RockJock: A program for determining quantitative mineralogy from powder X-ray diffraction data. USGS Open file Report 03-78. USGS.CrossRefGoogle Scholar
Estrela, C. Sydney, G.B. Bammann, L.L. and Felippe, O. Jr., 1994 Mechanism of action of calcium and hydroxyl ions of calcium hydroxide on tissue and bacteria Brazilian Dental Journal> 6 8590.Google Scholar
Feng, Q.L. Kim, T.N. Wu, J. Park, E.S. Kim, J.O. Lim, D.Y. and Cui, F.Z., 1998 Antibacterial effects of Ag-HAp thin films on alumina substrates Thin Solid Films> 335 214219 10.1016/S0040-6090(98)00956-0.CrossRefGoogle Scholar
Fenton, H.J.H., 1894 Oxidation of tartaric acid in the presence or iron Journal of the Chemical Society> 65 899910 10.1039/CT8946500899.CrossRefGoogle Scholar
Ferrand, T. and Yvon, J., 1991 Thermal properties of clay pastes for pelotherapy Applied Clay Science> 6 2138 10.1016/0169-1317(91)90008-W.CrossRefGoogle Scholar
Ferris, F.G. Fyfe, W.S. and Beveridge, T.J., 1987 Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment Chemical Geology> 63 225232 10.1016/0009-2541(87)90165-3.CrossRefGoogle Scholar
Franklin, N.M. Stauber, J.L. Markich, S.J. and Lim, R.P., 2000 pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp.). Aquatic Toxicology> 48 275289 10.1016/S0166-445X(99)00042-9.CrossRefGoogle ScholarPubMed
Frost, R.L. Ruan, H. Kloprogge, J.T. and Gates, W.P., 2000 Dehydration and dehydroxylation of nontronites and ferruginous smectite Thermochimica Acta> 346 6372 10.1016/S0040-6031(99)00366-4.CrossRefGoogle Scholar
George, K.M. Chatterjee, D. Gunawardana, G. Welty, D. Hayman, J. Lee, R. and Small, P.L., 2002 Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence Science> 283 854857 10.1126/science.283.5403.854.CrossRefGoogle Scholar
Giese, R.F. and van Oss, C.J., 2002 Colloid and Surface Properties of Clays and Related Minerals New York Marcel Dekker 10.1201/9780203910658.CrossRefGoogle Scholar
Goldberg, S., 2002 Competitive adsorption of arsenate and arsenite on oxides and clay minerals Soil Science Society of America Journal> 66 413421 10.2136/sssaj2002.4130.CrossRefGoogle Scholar
Hall, R.E. Bender, G. and Marquis, R.E., 1987 Inhibitory and cidal antimicrobial actions of electrically generated silver ions Journal of Oral Maxillofacial Surgery> 45 779784 10.1016/0278-2391(87)90202-3.CrossRefGoogle ScholarPubMed
Haydel, S.E., Remineh, C.M., and Williams, L.B. (2008) Broad-spectrum in vitro antibacterial activities of clay minerals against antibiotic-susceptible and antibiotic-resistant bacterial pathogens. Journal of Antimicrobial Chemotherapy (in press).CrossRefGoogle Scholar
Hedges, R.W. and Baumberg, S., 1973 Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. Journal of Bacteriology> 115 459460.Google ScholarPubMed
Heller-Kallai, L. and Rozenson, I., 1980 Dehydroxylation of dioctahedral phyllosilicates Clays and Clay Minerals> 28 355368 10.1346/CCMN.1980.0280505.CrossRefGoogle Scholar
Jackson, M.L., 1979 Soil Chemical Analysis-Advanced course 2 Madison, Wisconsin 53705, USA Published by the author.Google Scholar
Johnston, R.B. Keele, B.B. Misra, H.P. Leymeyer, J.E. Webb, L.S. Baehner, R.L. and Rajagopalan, K.V., 1975 The role of superoxide anion generation in phagocytic bactericidal activity The Journal of Clinical Investigation> 55 13571372 10.1172/JCI108055.CrossRefGoogle ScholarPubMed
Kim, J. Dong, H. Seabaugh, J. Newell, S.W. and Eberl, D.D., 2004 Role of microbes in the smectite to illite reaction Science> 303 830832 10.1126/science.1093245.CrossRefGoogle ScholarPubMed
Kodukula, P.S. Prakasam, T.B.S. Antonisen, A.C., Bazin, M.J. and Prosser, J.I., 1988 Role of pH in biological wastewater treatment process Physiological Models in Microbiology 1 Boca Raton, Florida CRC Press 114134.Google Scholar
Kostka, J.E. Dalton, D.D. Skelton, H. Dollhopf, S. and Stucki, J.W., 2002 Growth of iron (III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms Applied and Environmental Microbiology> 68 62566262 10.1128/AEM.68.12.6256-6262.2002.CrossRefGoogle Scholar
Kurkdjian, A. and Guern, J., 1989 Intracellular pH: Measurement and importance in cell activity Annual Reviews Plant Physiology Plant Molecular Biology> 40 271303 10.1146/annurev.pp.40.060189.001415.CrossRefGoogle Scholar
Lanson, B. and Champion, D., 1991 The I-S to illite reaction in the late stages of diagenesis American Journal of Science> 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Ma’or, Z. Henis, Y. Along, Y. Orlov, E. Sorensen, K.B. and Oren, A., 2006 Antimicrobial properties of Dead Sea black mineral mud International Journal of Dermatology> 45 504511 10.1111/j.1365-4632.2005.02621.x.CrossRefGoogle ScholarPubMed
Maple, P.A. Hamilton-Miller, J.M. and Brumfitt, W., 1992 Comparison of the in-vitro activities of the topical antimicrobials azelaic acid, nitrofurazone, silver sulphadiazine and mupirocin against methicillin-resistant Staphylococcus aureus Journal of Antimicrobial Chemotherapy> 29 661668 10.1093/jac/29.6.661.CrossRefGoogle ScholarPubMed
Mendonca, A.F. Amoroso, T.L. and Knabel, S.J., 1994 Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane Applied and Environmental Microbiology> 60 40094014.CrossRefGoogle ScholarPubMed
Metge, D., Harvey, R., Eberl, D., and Williams, L.B. (2007) Bactericidal properties of clays used for treatment of Buruli ulcer — an emerging public health threat. Geological Society of America, Abstracts with Programs, Denver, Colorado.Google Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals 2 New York Oxford University Press.Google Scholar
Mullen, M.D. Wolf, D.C. Ferris, F.G. Beveridge, T.J. Flemming, C.A. and Bailey, G.W., 1989 Bacterial sorption of heavy metals Applied and Environmental Microbiology> 55 31433149.CrossRefGoogle ScholarPubMed
Nies, D.H., 1999 Microbial heavy-metal resistance Applied Microbiology Biotechnology> 51 730750 10.1007/s002530051457.CrossRefGoogle ScholarPubMed
Nies, D.H. and Silver, S., 1995 Ion efflux systems involved in bacterial metal resistances Journal of Industrial Microbiology> 14 186199 10.1007/BF01569902.CrossRefGoogle ScholarPubMed
Nolte, W.A., 1982 Oral Microbiology 4 London Mosby 337.Google Scholar
Nordstrom, D.K., 2002 Worldwide occurrences of arsenic in groundwater Science> 296 21432145 10.1126/science.1072375.CrossRefGoogle Scholar
Norris, J., 1993 Surface free energy of smectite clay minerals Buffalo, New York SUNY 197 pp.Google Scholar
Pollastro, R.M., 1993 Considerations and applications of the illite-smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age Clays and Clay Minerals> 41 119133 10.1346/CCMN.1993.0410202.CrossRefGoogle Scholar
Reed, S.J.B., 1993 Electron Microprobe Analysis 2 Cambridge, UK Cambridge University Press 326 pp.Google Scholar
Rogers, J.R. and Bennett, P.C., 2004 Microbial release and utilization of inorganic nutrients from feldspar, basalt, and glass Chemical Geology> 203 91108 10.1016/j.chemgeo.2003.09.001.CrossRefGoogle Scholar
Schoonen, M.A.A. Cohn, C.A. Roemer, E. Laffers, R. Simon, S.R. O’Riordan, T., Sahai, N. and Schoonen, M.A.A., 2006 Mineral-induced formation of reactive oxygen species Medical Mineralogy and Geochemistry Chantilly, Virginia Mineralogical Society of America 179221 10.1515/9781501509421-008 Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Środoń, J. Drits, V.A. McCarty, D.K. Hsieh, J.C. and Eberl, D.D., 2001 Quantitative X-ray diffraction analysis of clay bearing rocks from random preparations Clays and Clay Minerals> 49 514528 10.1346/CCMN.2001.0490604.CrossRefGoogle Scholar
Stucki, J.W. Bailey, G.W. and Gan, H., 1996 Oxidation-reduction mechanisms in iron-bearing phyllosilicates Applied Clay Science> 10 417430 10.1016/0169-1317(96)00002-6.CrossRefGoogle Scholar
Suzuki, Y. Banfield, J.F., Burns, P.C. and Finch, R., 1999 Geomicrobiology of Uranium Uranium: Mineralogy, Geochemistry and the Environment Washington, D.C Mineralogical Society of America 393432 10.1515/9781501509193-013.CrossRefGoogle Scholar
Suzuki, Y. and Banfield, J.F., 2004 Resistance to and accumulation of uranium by bacteria from a uranium-contaminated site Geomicrobiology Journal> 21 113121 10.1080/01490450490266361.CrossRefGoogle Scholar
Uchida, M. Yamamoto, T. Furuhashi, H. Nakata, S. and Nakagawa, Z., 2004 Antibacterial activity of silver ions at a minimum inhibitory concentration Journal of Antibacterial and Antifungal Agents> 32 115121.Google Scholar
van der Werf, T.S. Stinear, T. Stienstra, Y. van der Graaf, W.T. and Small, P.L., 2003 Mycolactones and Mycobacterium ulcerans disease Lancet> 362 10621064 10.1016/S0140-6736(03)14417-0.CrossRefGoogle ScholarPubMed
van Oss, C.J., 1994 Interfacial Forces in Aqueous Media New York Marcel Dekker 440 pp.Google Scholar
Wackett, L.P. Dodge, A.G. and Ellis, L.B., 2004 Microbial genomics and the periodic table Applied and Environmental Microbiology> 70 647655 10.1128/AEM.70.2.647-655.2004.CrossRefGoogle ScholarPubMed
Weast, R.C., 1984 Handbook of Chemistry and Physics 64 Boca Raton, Florida CRC.Google Scholar
Weir, E., 2002 Buruli ulcer: the third most common mycobacterial infection Canadian Medical Association Journal> 166 1691.Google ScholarPubMed
Williams, L.B. Holland, M. Eberl, D.D. Brunet, T. and de Brunet Courssou, L., 2004 Killer Clays! Natural antibacterial clay minerals Mineralogical Society Bulletin> 139 38.Google Scholar
Wilson, M.J., 2003 Clay mineralogical and related characteristics of geophagic materials Journal of Chemical Ecology> 29 15251547 10.1023/A:1024262411676.CrossRefGoogle ScholarPubMed
Wolthers, M. Butler, I.B. and Rickard, D., 2007 Influence of arsenic on iron sulfide transformations Chemical Geology> 236 217227 10.1016/j.chemgeo.2006.09.010.CrossRefGoogle Scholar
World Health Organization, 2004 Provisional guidance on the role of specific antibiotics in the management of Mycobacterium ulcerans disease (Buruli ulcer) Geneva, Switzerland World Health Organization.Google Scholar