The isotopic geochemistry of CaCO3 encrustations in Taylor Valley, Antarctica: Implications for their origin

Authors

DOI:

https://doi.org/10.3986/AGS.7233

Keywords:

calcium carbonate, isotopic ratio, salt deposit, McMurdo Dry Valleys, Antarctica

Abstract

Calcium carbonate (CaCO<sub>3</sub>) encrustations occur in most desert soils, including polar ones, and such encrustations preserve records of geochemical, hydrological, and atmosphere processes affecting these soils. We have collected a series of CaCO3 encrustations found underneath surface rocks in the soils and tills of Taylor Valley, McMurdo Dry Valleys (~78°S lat.), Antarctica. These encrustations were analyzed for 87Sr/86S and δ18O and δ13C to determine what relation they have with the underlying soils, and the material in which they are in contact, and to identify the processes that control their formation. In all but one case, the isotopic data indicate that the source of Sr to these encrustations is not from the rock on which it is associated. The primary source of Sr (and by analogy Ca) is either from dust that has been deposited through aeolian processes or from the aggregate of till material within the soils. The δ13C values for Taylor Valley encrustations ranged from 5.7 to 11.0‰, and are consistent with a carbon source from atmospheric CO<sub>2</sub>. The δ18O values range from –8.1 to –11.2‰ and are heavier than expected for equilibrium calcite precipitation from Taylor Valley meteoric water. Taken together these results indicate that the CaCO<sub>3</sub> was formed by rapid evaporation of films beneath clasts that had become supersaturated with respect to CaCO<sub>3</sub>.

Downloads

Download data is not yet available.

References

Aharon, P. 1988: Oxygen, carbon and U-series isotopes of aragonites from Vestfold Hills, Antarctica: Clues to geochemical processes in subglacial environments. Geochimica et Cosmochimica Acta 52-9. DOI: https://doi.org/10.1016/0016-7037(88)90134-2

Andrews, M. G., Jacobson, A. D. 2017: The radiogenic and stable isotope geochemistry of basalt weathering in Iceland: Role of hydrothermal calcite and implications for long-term climate regulation. Geochimica et Cosmochimica Acta 215. DOI: https://doi.org/10.1016/j.gca.2017.08.012

Antibus, J. V., Panter, K. S., Wilch, T. I., Dunbar, N., McIntosh, W., Tripati, A., Bindeman, I., Blusztajn, J. 2014: Alteration of volcaniclastic deposits at Minna Bluff: Geochemical insights on mineralizing environment and climate during the Late Miocene in Antarctica. Geochemistry, Geophysics, Geosystems 15-8. DOI: https://doi.org/10.1002/2014GC005422

Barrett, J. E., Virginia, R. A., Lyons, W. B., McKnight, D. M., Priscu, J. C., Doran, P. T., Fountain, A. G., Wall, D. H., Moorhead, D. L. 2007: Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems. Journal of Geophysical Research 112-G1. DOI: https://doi.org/10.1029/2005JG000141

Bunting, B. T., Christensen, L. 1978: Micromorphology of calcareous crusts from the Canadian High Arctic. Geologiscka Föreningen Forhandlinger I Stockholm Förhandlingar 100-4. DOI: https://doi.org/10.1080/11035897809454476

Burkins, M. B., Virginia, R. A., Chamberlain, C. P., Wall, D. H. 2000: Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81-9. DOI: https://doi.org/10.2307/177461

Campbell, I. B., Claridge, G. G. C. 1977: Development and significance of polygenetic features in Antarctic soils. New Zealand Journal of Geology and Geophysics 20-5. DOI: https://doi.org/10.1080/00288306.1977.10420688

Capo, R. C., Chadwick, O. A. 1999: Sources of strontium and calcium in desert soil and calcrete. Earth and Planetary Science Letters 170, 1-2. DOI: https://doi.org/10.1016/S0012-821X(99)00090-4

Cerling, T. E. 1984: The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters 71-2. DOI: https://doi.org/10.1016/0012-821X(84)90089-X

Clark, I. D., Lauriol, B. 1992: Kinetic enrichment of stable isotopes in cryogenic calcites. Chemical Geology 102, 1-4. DOI: https://doi.org/10.1016/0009-2541(92)90157-Z

Courty, M.-A., Marlin, C., Dever, L., Tremblay, P., Vachier, P. 1994: The properties, genesis and environmental significance of calcitic pendants from the high arctic (Spitsbergen). Geoderma 61, 1-2. DOI: https://doi.org/10.1016/0016-7061(94)90012-4

Denton, G. H., Bockheim, J. G., Wilson, S. C., Stuiver, M. 1989: Late Wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica. Quaternary Research 31-2. DOI: https://doi.org/10.1016/0033-5894(89)90004-5

Deuerling, K. M., Lyons, W. B., Welch, S. A., Welch, K. A. 2014: The characterization and role of aeolian deposition on water quality, McMurdo Dry Valleys, Antarctica. Aeolian Research 13. DOI: https://doi.org/10.1016/j.aeolia.2014.01.002

Diaz, M. A. 2017: Spatial and temporal geochemical characterization of aeolian material from the McMurdo Dry Valleys, Antarctica. M.Sc. Thesis, Ohio State University. Columbus.

Diaz, M. A., Lyons, W. B., Adams, B. J., Welch, S. A., Khan, A. L., McKnight, D. M., Cary, S. C. 2018: Major oxide chemistry of mineral dust, McMurdo Dry Valleys, Antarctica: Revisted. ProScience 5. DOI: https://doi.org/10.14644/dust.2018.005

Doran, P. T., Berger, G. W., Lyons, W. B., Wharton, R. A., Davisson, M. L., Southon, J., Dibb, J. E. 1999: Dating Quaternary lacustrine sediments in the McMurdo Dry Valleys, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 147, 3-4. DOI: https://doi.org/10.1016/S0031-0182(98)00159-X

Doran, P. T., McKay, C. P., Clow, G. D., Dana, G. L., Fountain, A. G., Nylen, T., Lyons, W. B. 2002: Valley floor climate observations from the McMurdo dry valleys, Antarctica. Journal of Geophysical Research 107-D24. DOI: https://doi.org/10.1029/2001JD002045

Dowling, C. B., Lyons, W. B., Welch, K. A. 2013: Strontium isotopic signatures of streams from Taylor Valley, Antarctica, Revisited: The role of carbonate mineral dissolution. Aquatic Geochemistry 19-3. DOI: https://doi.org/10.1007/s10498-013-9189-4

Faure, G., Jones, L. M., Owen, L. B. 1973: Isotopic composition of strontium and geologic history of the basement rocks of Wright Valley, Southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics 17-3. DOI: https://doi.org/10.1080/00288306.1973.10421585

Foland, K. A., Allen, J. C. 1991 Magma sources for Mesozoic anorogenic granites of the White Mountain magma series. Contributions to Mineral and Petrology 109-2. DOI: https://doi.org/10.1007/BF00306479

Foley, K. K., Lyons, W. B., Barrett, J. E., Virginia, R. A. 2006: Pedogenic carbonate distribution within glacial till in the Taylor Valley, Southern Victoria Land, Antarctica. Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. GSA Special Papers 416. DOI: https://doi.org/10.1130/2006.2416(06)

Forman, S. L., Miller, G. H. 1984: Time-dependent soil morphologies and pedogenic processes on raised beachers, Bröggerhalvöya, Spitsbergen, Svalbard Archipelago. Arctic and Alpine Research 16-4. DOI: https://doi.org/10.2307/1550900

Fountain, A. G., Lyons, W. B., Burkins, M. B., Dana, G. L., Doran, P. T., Lewis, K. J., McKnight, D. M., Moorhead, D. L., Parsons, A. N., Priscu, J. C., Wall, D. H., Robert, A. W. (Jr.), Virginia, R. A. 1999: Physical Controls on the Taylor Valley Ecosystem, Antarctica. BioScience 49-12. DOI: https://doi.org/10.1525/bisi.1999.49.12.961

Fountain, A. G., Nylen, T. H., Monaghan, A., Basagic, H. J., Bromwich, D. 2010: Snow in the McMurdo Dry Valleys, Antarctica. International Journal of Climatology 30-5. DOI: https://doi.org/10.1002/joc.1933

Friedman, I., O'Neil, J. R. 1977: Data of Geochemistry: Compilation of stable isotope fractionation factors of geochemical interests. Geological Survey Professional Paper 440-KK. Washington DC.

Gooseff, M. N., Lyons, W. B., McKnight, D. M., Vaughn, B. H., Fountain, A. G., Dowling, C. 2006: A stable isotopic investigation of a polar desert hydrologic system, McMurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research 38-1. DOI: https://doi.org/10.1657/1523-0430(2006)038[0060:ASIIOA]2.0.CO;2

Gooseff, M. N., McKnight, D. M., Lyons, W. B., Blum, A. E. 2002: Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research 38-12. DOI: https://doi.org/10.1029/2001WR000834

Green, W. J., Angle, M. P., Chave, K. E. 1988: The geochemistry of Antarctic streams and their role in the evolution of four lakes of the McMurdo dry valleys. Geochimica et Cosmochimica Acta 52-5. DOI: https://doi.org/10.1016/0016-7037(88)90280-3

Hall, B. L., Denton, G. H., Fountain, A. G., Hendy, C. H., Henderson, G. M. 2010: Antarctic lakes suggest millennial reorganizations of Southern Hemisphere atmospheric and oceanic circulation. Proceedings of the National Academy 107. DOI: https://doi.org/10.1073/pnas.1007250107

Hall, B. L., Denton, G. H., Hendy, C. H. 2000: Evidence from Taylor Valley for a Grounded Ice Sheet in the Ross Sea, Antarctica. Geografiska Annaler: Series A, Physical Geography 82, 2-3. DOI: https://doi.org/10.1111/j.0435-3676.2000.00126.x

Hendy, C. H. 2000: Late Quaternary lakes in the McMurdo Sound region of Antarctica. Geografiska Annaler: Series A, Physical Geography 82, 2-3. DOI: https://doi.org/10.1111/j.0435-3676.2000.00131.x

Hendy, C. H., Healy, T. R., Rayner, E. M., Shaw, J., Wilson, A. T. 1979: Late Pleistocene glacial chronology of the Taylor Valley, Antarctica, and the global climate. Quaternary Research 11-2. DOI: https://doi.org/10.1016/0033-5894(79)90002-4

Hendy, C. H., Wilson, A. T., Popplewell, K. B., House, D. A. 1977: Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climatic changes. New Zealand Journal of Geology and Geophysics 20-6. DOI: https://doi.org/10.1080/00288306.1977.10420698

Jones, L. M., Faure, G. 1968: Origin of the salts in Taylor Valley. Earth and Planetary Science Letters 3. DOI: https://doi.org/10.1016/0012-821X(67)90019-2

Keys, J. R. H., Williams, K. 1981: Origin of crystalline, cold desert salts in the McMurdo Region, Antarctica. Geochimica et Cosmochimica Acta 45-12. DOI: https://doi.org/10.1016/0016-7037(81)90084-3

Knauth, L. P., Brilli, M., Klonowski, S. 2002: Isotope geochemistry of caliche developed on basalt. Geochimica et Cosmochimica Acta 67-2. DOI: https://doi.org/10.1016/S0016-7037(02)01051-7

Lacelle, D. 2007: Environmental setting, (micro)morphologies and stable C-O isotope compositions of cold climate carbonate precipitates—a review and evaluation of their potential as paleoclimatic proxies. Quaternary Science Reviews 26, 11-12. DOI: https://doi.org/10.1016/j.quascirev.2007.03.011

Lacelle, D., Lauriol, B., Clark, I. D. 2007: Origin, age and paleoenvironmental significance of carbonate precipitates in a granitic environment, Askshayuk Pass, Baffin Island, Canada. Canadian Journal of Earth Sciences 44-1. DOI: https://doi.org/10.1139/e06-088

Lancaster, N. 2002: Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: A preliminary assessment. Arctic, Antarctic and Alpine Research 34-3. DOI: https://doi.org/10.1080/15230430.2002.12003500

Landi, A., Mermut, A. R., Anderson, D. W. 2003: Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 117, 1-2. DOI: https://doi.org/10.1016/S0016-7061(03)00161-7

Lawrence, M. J. F., Hendy, C. H. 1989: Carbonate deposition and Ross Sea ice advance, Fryxell basin, Taylor Valley, Antarctica. New Zealand Journal of Geology and Geophysics 32-2. DOI: https://doi.org/10.1080/00288306.1989.10427588

Levy, J. S., Fountain, A. G., Welch, K. A., Lyons, W. B. 2012: Hypersaline "wet patches" in Taylor Valley Antarctica. Geophysical Research Letters 39-5. DOI: https://doi.org/10.1029/2012GL050898

Lipar, M., Webb, J. A., Cupper, M. L., Wang, N. 2017: Aeolianite, calcrete/microbialite and karst in southwestern Australia as indicators of Middle to Late Quaternary palaeoclimates. Palaeogrography Palaeoclimatology Palaeoecology 470. DOI: https://doi.org/10.1016/j.palaeo.2016.12.019

Lyons, W. B., Carey, A. E., Hicks, D. M., Nezat, C. A. 2005: Chemical weathering in high-sediment-yielding watersheds, New Zealand. Journal of Geophysical Research Earth Surface 110-F1. DOI: https://doi.org/10.1029/2003JF000088

Lyons, W. B., Leslie, D. L., Harmon, R. S, Neumann, K., Welch, K. A., Bisson, K. M., McKnight, D. M. 2013: The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Applied Geochemistry 32. DOI: https://doi.org/10.1016/j.apgeochem.2012.08.019

Lyons, W. B., Nezat, C. A., Benson, L. V., Bullen, T. D., Graham, E. Y., Kidd, J., Welch, K. A., Thomas, J. M. 2002: Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical Weathering in a Polar Climate. Aquatic Geochemistry 8-2. DOI: https://doi.org/10.1023/A:1021339622515

Lyons, W. B., Tyler, S. W., Wharton, R. A., McKnight, D. M., Vaughn, B., 1998: A late Holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarctic Science 10-3. DOI: https://doi.org/10.1017/S0954102098000340

Ma, J., Wang, Z.-Y., Stevenson, B. A., Zheng, Y.-J., Li, Y. 2013: An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Scientific Reports 3. DOI: https://doi.org/10.1038/srep02025

MacDonell, S. A., Fitzsimons, S. J., Moelg, T. 2013: Seasonal sediment fluxes forcing supraglacial melting on the Wright Lower Glacier, McMurdo Dry Valleys, Antarctica. Hydrological Processes 27-22. DOI: https://doi.org/10.1002/hyp.9444

Marion, G. M., Introne, D. S., Van Cleve, K. 1991: Stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U.S.A.: Composition and mechanisms of formation. Chemical Geology: Isotope Geoscience Section 86-2. DOI: https://doi.org/10.1016/0168-9622(91)90056-3

Montañez, I. P., Banner, J. L., Osleger, D. A., Borg, L. E., Bosserman, P. J. 1996: Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: Implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology 24-10. DOI: https://doi.org/10.1130/0091-7613(1996)024<0917:ISIVAS>2.3.CO;2

Naiman, Z., Quade, J., Patchett, P. J. 2000: Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the southwest United States. Geochimica et Cosmochimica Acta 64-18. DOI: https://doi.org/10.1016/S0016-7037(00)00410-5

Nakai, N., Wada, H., Kiyosu, Y., Takimoto M. 1975: Stable isotopes studies on the origin and geological history of water and salts in the Lake Vanda area. Antarctica Geochemical Journal 9-1. DOI: https://doi.org/10.2343/geochemj.9.7

Nezat, C. A., Lyons, W. B., Welch, K. A. 2001: Chemical weathering in streams of a polar desert (Taylor Valley, Antarctica). Geological Society of America Bulletin 113-11. DOI: https://doi.org/10.1130/0016-7606(2001)113<1401:CWISOA>2.0.CO;2

Parsons, A. N., Barrett, J. E., Wall, D. H., Virginia, R. A. 2004: Soil carbon dioxide flux in Antarctic Dry Valley ecosystems. Ecosystems 7-3. DOI: https://doi.org/10.1007/s10021-003-0132-1

Quade, J., Chivas, A. R., McCulloch, M. T. 1995: Strontium and carbon isotope tracers and the origins of soil carbonate in South Australia and Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology 113-1. DOI: https://doi.org/10.1016/0031-0182(95)00065-T

Quade, J., Rech, J. A., Latorre, C., Betancourt, J. L., Gleeson, E., Kalin, M. T. K. 2007: Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochimica et Cosmochimica Acta 71-15. DOI: https://doi.org/10.1016/j.gca.2007.02.016

Swart, P. K., Burns, S. J., Leder, J. J. 1991: Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology 86-2. DOI: https://doi.org/10.1016/0168-9622(91)90055-2

Šabacká, M., Priscu, J. C., Basagic, H. J., Fountain, A. G., Wall, D. H., Virgina, R. A., Greenwood, M. C. 2012: Aeolian flux of biotic and abiotic material in Taylor Valley, Antarctica. Geomorphology 155–156. DOI: https://doi.org/10.1016/j.geomorph.2011.12.009

Van der Hoven, S. J., Quade, J. 2002: Tracing spatial and temporal variations in the sources of calcium in pedogenic carbonates in a semiarid environment. Geoderma 108, 3-4. DOI: https://doi.org/10.1016/S0016-7061(02)00134-9

Vogt, T., Corte, A. E. 1996: Secondary precipitates in Pleistocene and present cryogenic environments (Mendoza Precordillera, Argentina, Transbaikalia, Siberia, and Seymour Island, Antarctica). Sedimentology 43-1. DOI: https://doi.org/10.1111/j.1365-3091.1996.tb01459.x

Wilch, T. I., Lux, D. R., Denton, G. H., McIntosh, W. C. 1993: Minimal Pliocene-Pleistocene uplift of the Dry Valleys sector of the Transantarctic Mountains: A key parameter in ice-sheet reconstructions. Geology 21-9. DOI: https://doi.org/10.1130/0091-7613(1993)021<0841:MPPUOT>2.3.CO;2

Downloads

Published

31-12-2020

How to Cite

Lyons, B., Foley, K., Carey, A., Diaz, M., Bowen, G., & Cerling, T. (2020). The isotopic geochemistry of CaCO3 encrustations in Taylor Valley, Antarctica: Implications for their origin. Acta Geographica Slovenica, 60(2), 125–139. https://doi.org/10.3986/AGS.7233

Issue

Section

Special issue: The disappearing cryosphere in the southeastern Alps