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As a result of aquaculture activities Pacific oysters Crassostrea gigas (Thunberg, 1793) have invaded the European
Wadden Sea. Using a variable noncoding mitochondrial marker, we show that the invaded range is the result of
two independent invasions. Haplotype frequencies point towards two separate groups, one in the southern and
the other in the northern Wadden Sea. We found virtually no genetic differentiation throughout the southern
range and the putative source fromBritish Columbia, Canada, suggesting that the Southern region can be consid-
ered as a closed population. In theNorth,mismatch distributions, haplotype ordination and isolation-by-distance
analysis suggest a stronger, persistent impact of aquaculture on invasive populations. Due to the ongoing supply
of new geneticmaterial fromhatchery production the northern invasive populations can therefore be considered
as an open population highlighting the importance of aquaculture practice on the genetics of this keystone
invader in the Wadden Sea.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Originating from East Asia, Pacific oysters Crassostrea gigas (Thunberg,
1793) escaped from commercial oyster farms and successfully invaded a
variety of coastal habitats worldwide (e.g. (Ruesink et al., 2005; Wrange
et al., 2010). This also applies to the European Wadden Sea, where two
invasions were reported. One originated from Pacific oysters that were
imported from farms in British Columbia (Canada) into the Dutch
Oosterschelde estuary between 1964 and 1982. Massive spatfalls during
warm summers in 1976 and 1982 resulted in the establishment of a
permanent population (Drinkwaard, 1998; Smaal et al., 2009). To the
Wadden Sea, approximately 150 km north of the Oosterschelde estuary,
Pacific oysters either arrived accidentally by mussel transports from the
Oosterschelde or experimentally with imports to the island of Texel
(western Wadden Sea) in 1978 (Smaal et al., 2009), which is also where
the first wild Pacific oysters were encountered in 1983 (Bruins, 1983).
From there the population spread east and arrived as far as the island of
Baltrum inGermany by 1998 (Wehrmann et al., 2000) and rapidly spread
further to Büsum across the Elbe estuary (Reise et al., 2005).

In the northern Wadden Sea off the island of Sylt, regular aquacul-
turewith Pacific oysters commenced in 1986with juvenile seed oysters
imported from Britain every year and then grown to market size in the

open water (Reise, 1998). Although it was thought that summer tem-
peratures in the northern Wadden Sea are too low for reproduction, a
successful north- and southward spread was soon observed (Diederich
et al., 2005). Owing to high late summer temperatures in the early
2000s a strong expansion could be observed reaching population densi-
ties from 100 to 2000 individuals m−2 (Nehls and Büttger, 2007;
Nehring et al., 2009; Reise et al., 2005). Since wild C. gigas in the
Wadden Sea is not commercially harvested, apparently not affected
by predators, parasites and competitors to a large extent (Elsner et
al., 2011; Kochmann et al., 2008; Krakau et al., 2006; Reise and van
Beusekom, 2008), further population growth can be expected. This
oyster invasion is perceived as the most severe impact an alien species
so far had on the ecosystem of the Wadden Sea (Nehring et al., 2009),
partly because mussel beds around low tide line became dominated
by oysters with ecological consequences for native species (Diederich,
2005, 2006; Markert et al., 2010; Troost, 2010). For example, in mixed
beds mussels are relegated by crabs to refuge positions at the bottom
between the much larger oysters where growth is reduced (Eschweiler
and Christensen, 2011).

Nothing is known about the genetic population structure and
distinctness of the two invasions in the Wadden Sea. Such data is
needed to clarify the origin and the specific demographic history of
the invasive populations. It can also provide estimates for inocculum
size and whether an invasion only happened once or on repeated
occasions (Geller et al., 2010; Reusch et al., 2010; Roman and Darling,
2007). Such multiple introductions are usually cryptic and multiple
invasions can only be revealed by genetic markers (e.g. invasion of
green crab into West-Atlantic (Roman, 2006)).
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To test whether all Pacific oysters in the Wadden Sea originate
from one or more genetic stocks of the global oyster trade, we con-
structed a mitochondrial phylogeography containing oysters from
four northern and three southern sites throughout the Wadden Sea.
To further evaluate the connectivity between aquaculture and
invading populations (Petersen et al., 2010; Voisin et al., 2005) we
also included specimen from the two putative aquaculture sources
(i.e. Oosterschelde estuary and Sylt) as well as oysters from a natural-
ized population in British Columbia representative for the original
stocking population of the Oosterschelde (Drinkwaard, 1998). Using
this sampling scheme we can connect putative and known invasion
routes with aquaculture sources and provide population genetic and
demographic signatures of the most dramatic invasion process
observed in the Dutch–German–Danish Wadden Sea. The results
offer implications for further research and management practice.

2. Materials and methods

A total of 190 specimens of C. gigas were successfully analysed in
this study. Oysters were collected between 2008 and 2010 from
seven Wadden Sea sites and from one site in British Columbia repre-
senting wild invasive populations. These were complemented by
commercially sold, farmed oysters from the Dutch Oosterschelde
estuary and the Northern Waddensea (Dittmeyer's Austern Compagnie,
List, Germany, Table 1). We took care to sample a comparable size/age
spectrum between sites. DNA was extracted partially by using Qiagen
Blood & Tissue Kit (Qiagen, Hilden, Germany) following the manufac-
turer's instructions or by a quick extraction method, where small tissue
pieces from the adductor muscle were prepared and dissolved in 40 μl
Tris-buffer (10 mM Tris, pH 8.0) with 10% proteinase K for 15 min at
56 °C. This was followed by boiling for 10 min at 99 °C. Finally, samples
were centrifuged for 1 min at 10,000 rpm and the supernatant was
transferred to a new tube and stored at −20 °C. We used a noncoding
region of the mitochondrial genome to have a selectively neutral and
lineage-specific marker that offers a simple mutation model due to
lack of recombination. This marker (major noncoding region, MNR)
was found to be highly variable in Korean populations of C. gigas
(Aranishi and Okimoto, 2005). Primers (Cg-mt-for TCACAAGTA-
CATTTGTCTTCCA; Cg-mt-rev AACGTTGTAAGCGTCATGTAAT) were
used for amplification in 50 μl reaction volumewith: 3 μl of 1:10 diluted
DNA extract, 0.2 mM of each dNTP, 0.2 μM of each primer, 1.5 mM of
MgCl2, and 2.5 U Taq polymerase (Qiagen; Hilden, Germany) in the
buffer supplied by the manufacturer. The initial denaturation at 94 °C
lasted 2 min, followed by 40 cycles with denaturation at 94 °C for 60 s,
annealing at 61 °C for 60 s, and extension at 72 °C for 60 s. Successful
amplification was confirmed by electrophoresis on 1% agarose gels.
The fragments were purified using the QIAquick purification kit
(Qiagen; Hilden, Germany). Unidirectional sequencing of PCR products
was carried out by MWG Eurofins Biotech (Martinsried, Germany) or
Starseq (Genterprises, Mainz, Germany). Twenty-three randomly

chosen singleton haplotypeswere verified by repeatingDNAextraction,
and PCR amplification, and were sequenced in reverse direction.

2.1. Data analyses

Our three aims for this data set were to describe the mitochondrial
diversity, to assess population demography and estimate genetic
differentiation between invasive and putative source populations.

2.2. Haplotype diversity

Quality of sequencing chromatograms was manually checked with
the freeware CHROMAS Lite 2.01, before alignment using CLUSTAL W
(Thompson et al., 1994) implemented in BIOEDIT (Hall, 1999).
Sequence sets were defined with the software package DnaSP 5.0
(Rozas et al., 2003). We calculated standard indices of haplotype
and nucleotide diversity using ARLEQUIN 3.0 (Excoffier et al., 2005)
and a haplotype network was calculated and plotted with help of
the pegas package in the R statistical environment (R Development
Core Team, 2010).

2.3. Population demography

To investigate the genetic signatures of recent population demog-
raphy we calculated neutrality test statistics of Tajima's D and Fu's F
and mismatch distributions using ARLEQUIN (Excoffier et al., 2005).
We fitted a population expansion model to obtain predicted values
for the mismatch distribution and calculate population genetic
parameters for population expansion (i.e. θ before and after the
expansion and time since expansion τ).

2.4. Genetic differentiation

To detect population clustering individual haplotypes were ordi-
nated on population level using a discriminant correspondence anal-
ysis implemented in the ade4 package (R Development Core Team,
2010). To avoid overweighting of rare haplotypes that do not contrib-
ute largely to population differentiation, we excluded all singletons
from this analysis. We tested the resulting structure against 999 ran-
dom permutations as implemented in the randtest routine in ade4.
After detecting significant within group structure we conducted
post-hoc pairwise discriminant correspondence analysis to single
out which population pairs drive overall differences. Pairwise genetic
differentiation (FST) was calculated using ARLEQUIN (Excoffier et al.,
2005). Significance of pairwise genetic differentiation (FST) was assessed
by comparing observed values to 500 random permutations. The influ-
ence of geographic distance on genetic differentiation (isolation by dis-
tance) was measured for all pairwise comparisons by correlating the
pairwise genetic differentiationmatrix (FST/1−FST) to the geographic dis-
tancematrix (measured as shortest waterway) usingMantel tests imple-
mented in the ade4 package. Isolation-by-distance between aquaculture
and invasive populations was assessed by linear regression.

3. Results

3.1. Haplotype diversity

In total, we found 76 mitochondrial haplotypes (GenBank acces-
sion numbers JF505202-JF505277) in 190 successfully sequenced
individuals. Length of sequences in the alignment was 663 base
pairs and 110 polymorphic sites could be detected including gaps.

Haplotype frequencies differed strongly between northern
(Nordstrand, Sylt south, Sylt north, Esbjerg and Sylt aquaculture) and
southern sites (Büsum, Wilhelmshaven, Texel and Oosterschelde, see
Fig. 1). The northern group largely consisted of haplotypes ht01, ht02,
ht04, ht06 and ht08, which were exclusively found at medium to high

Table 1
Population details of C. gigas sampling.

Sampling site (country) Latitude longitude Sampling date

Esbjerg (Denmark) 55°01′54″ N 08°25′54″ E April 2009
Sylt North (Germany) 55°02′31″ N 08°26′53″ E June 2008
Sylt Aquaculture
(farmed) (Germany)

54°59′38″ N 08°23′07″ E April 2010

Sylt South (Germany) 54°47′33″ N 08°18′26″ E June 2008
Nordstrand (Germany) 54°29′59″ N 08°48′51″ E April 2009
Büsum (Germany) 54°07′40″ N 08°51′28″ E April 2009
Wilhelmshaven (Germany) 53°31′03″ N 08°07′24″ E March 2009
Texel (Netherlands) 53°00′09″ N 04°47′15″ E August 2008
Oosterschelde
(farmed) (Netherlands)

51°36′16″ N 03°54′28″ E March 2009

Cortes Island, British
Columbia (Canada)

50°05′29″ N 124°59′22″ W September 2008
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frequencies in northern populations and only very few singletons
occurred. The southern group, on the other hand, was characterized by
a single predominant haplotype (ht05) and large numbers of closely
related singletons (Figs. 1, 2).

Samples from British Columbia also exhibited the characteristics
of the southern group thereby confirming the supposed role as stock-
ing source for the Oosterschelde. Haplotype ht05 was also the most
likely ancestral haplotype in the minimum spanning network con-
structed from all sequences (Fig. 2). It occurred in all populations of
the southern clade and in 3/5 populations of the northern group
representing 18.9% of all haplotypes. The frequency of ht05 differed
strongly between both groups. Only 4.8% of the northern oysters car-
ried ht05 compared to 32.9% of oysters belonging to the southern
group (Fig. 1). Most of the southern singletons differed from the
basal type by only one mutation (25/55) while most of the main
northern haplotypes differed by more mutational steps (9/17, see
Fig. 2).

Not surprisingly, the higher genetic variance in the southern
group was also reflected in a significantly higher number of haplo-
types (Table 2, F1,7=48.051, Pb0.001). Since most of these haplo-
types in the southern populations were actually singletons next to
the common basal type ht05, haplotypic diversity (i.e. the likelihood
of observing different haplotypes) did not differ significantly between
northern and southern populations (Table 2, F1,7=2.820, P=0.137).
The larger genetic distance between haplotypes in the northern
populations did however lead to higher estimates of nucleotide diver-
sity (Table 2, F1,7=5.687, P=0.049).

3.2. Population demography

Large negative values of Tajima's D and Fu's F in southern popula-
tions point to a stronger, probably longer lasting population expan-
sion in the South than in the North, where no clear pattern
indicative of population expansion or decline could be found
(Table 2, Tajima's D: F1,7=81.375, P=b 0.001, Fu's F: F1,7=57.083,
P=b0.001). This is also reflected in the mismatch distribution of
pairwise differences (Fig. 3). The observed distribution in the south
is unimodal (Fig. 3B) and fits the expected population expansion
model (τ=2.201, θ0=0.951, θ1=14.908) very well (Sum of squared
deviation Ssdb0.001, P=0.95). In the North, however, the mismatch
distribution is multi-peaked (Fig. 3A). Although similar population
expansion parameters were estimated as in the South (τ=4.584,
θ0=0.003, θ1=15.417) the observed data deviated significantly
from predicted values (Ssd=0.028, P=0.04), indicating that a popu-
lation expansion model does not represent the most likely demogra-
phy. Haplotypes in northern populations were more divergent from
each other than in the southern population (mean number of pair-
wise differences North=3.735 vs. South=3.031) probably reflecting
temporal variation in genotypes used for stocking or crossing
schemes within oyster hatcheries.

3.3. Genetic differentiation

The correspondence analysis supported grouping of northern and
southern populations (P (based on 999 random permutations)b
0.001). The ordination based on non-singleton haplotypes revealed
that the southern group clustered very closely with the basal haplo-
type (ht05) driving differentiation along axis 1 (Fig. 4). The Northern
group differentiates mainly along axis 2 driven by frequencies of hap-
lotypes common in the northern populations. Distance between
northern populations along axis 2 in the ordination corresponded to
geographic distance especially when considering distance from the

Fig. 1. Haplotype frequencies of invasive and source populations of Crassostrea gigas in
the Waddensea. Only common haplotypes occurring more than three times in the data
set are shown. Singletons shared between populations (sSing, dotted) and private sin-
gletons (pSing, white) have been pooled for graphical representation.

 1 mutation
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  North
  South

ht05

ht06
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ht04

ht08
ht01

ht03

Fig. 2. Network of all 76 mitochondrial haplotypes found in Northern and Southern invasive as well as putative source populations. Pie charts give haplotype frequencies in North-
ern (white) and Southern populations (black) and branch length represents the number of mutations. Size of circles corresponds to haplotype frequency.
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putative source, i.e. Sylt aquaculture. Here, pairwise discriminant cor-
respondence analyses were significant to the most distant popula-
tions (Sylt aquaculture — Sylt South: inertia=0.066, p=0.007; Sylt
aquaculture — Nordstrand: inertia=0.090, p=0.001) but not to the
closer populations (Sylt aquaculture — Sylt North: inertia=0.039,
p=0.227; Sylt aquaculture — Esbjerg: inertia=0.065, p=0.050).
Pairwise genetic distances (FST) supported the separation between
northern and southern populations (Table 3). Within the southern
group differentiation was very low even when including Oos-
terschelde aquaculture ranging from −0.008 to 0.001 and was not
significant in any case representing a homogeneous population with
little effect of genetic drift and/or high levels of gene flow. Values
within the northern group were higher, ranging from −0.012 to
0.149, but were only significant between Sylt aquaculture and the
most distant population in Nordstrand after Bonferroni correction

(Table 3). Pairwise genetic differentiation was higher between aqua-
culture and invasive populations than within invasive populations
(F1,12=5.62, P=0.035) in both regions, but did not differ significant-
ly between regions (F1,12=3.01, P=0.108) despite on average seven
times higher values in the Northern group (Fig. 5). Genetic differenti-
ation (i.e. FST/(1−FST)) increased with distance as shortest possible
waterway from the aquaculture site (Fig. 5, F1,2=34.038, P=0.028)
suggesting limited gene flow to distant populations and a continuous
input of new genetic material from the farmed oyster seed into close-
by invasive populations. While there was only a positive isolation-by-
distance trend among all populations in the Northern group (Mantel
test: r=0.35, p (based on 1000 random permutations)=0.13), isola-
tion by distance was significant among populations in the Southern
group (Mantel test: r=0.76, p (based on 1000 random permuta-
tions)=0.04). The slope of the correlation was however very small
(b10−4), and the maximal pairwise genetic differentiation of
FST=0.001 suggests that the effect size of geographic distance for
limiting gene flow was small as well.

4. Discussion

With the help of a mitochondrial phylogeography we could dem-
onstrate that two separate events led to invasion of Pacific oysters in
the Wadden Sea, which confirms the historical reconstruction of the
regional invasion process since the 1980s (Reise et al., 2005). Haplo-
type composition assigned populations into a Northern and a South-
ern group (Figs. 1, 4). Both invasions could be traced back to
potential aquaculture sources (i.e. Oosterschelde and Sylt, respectively)
because samples obtained from commercial farms fell into the same
respective clusters (Fig. 4). Aquaculture activity can potentially lead to
large inocculum sizes (Roman and Darling, 2007), especially in highly
fecund species like Pacific oysters. It is therefore not surprising that all
invasive populations in theWadden Sea displayed a high genetic diver-
sity (Table 2) and obviously did not lose genetic variability during
repeated founder events, which is often observed in cultured shellfish
(Petersen et al., 2010) and cultured algae (Voisin et al., 2005).

Table 2
Genetic diversity indices of C. gigas MNR mitochondrial DNA sequences.

Population N HTN S Hd π Tajima's
D

Fu's FS

North Esbjerg 18 8 15 0.882 0.0051 −0.983 −0.838
Sylt North 20 8 15 0.884 0.0057 −0.424 −0.214
Sylt
Aquaculture

20 10 16 0.890 0.0054 −0.737 −2.155

Sylt South 20 6 12 0.811 0.0051 −0.007 1.187
Nordstrand 16 8 13 0.858 0.0044 −0.777 −1.609
Mean 8 14.2 0.865 0.0051 −0.585 −0.730

South Büsum 20 16 32 0.947 0.0053 −2.387 −11.407
Willhelmshaven 20 14 21 0.890 0.0034 −2.324 −11.041
Texel 20 16 23 0.947 0.0038 −2.361 −14.625
Oosterschelde 20 13 23 0.853 0.0039 −2.273 −7.813
Mean 14.75 24.75 0.909 0.0041 −2.321 −11.220
British
Columbia

14 7 9 0.773 0.0023 −1.934 −3.518

Overall 190 76 110 0.929 0.0044 −2.481 −26.217

N = number of successfully sequenced individuals; HTN = number of haplotypes; S =
polymorphic sites; Hd = haplotype diversity; π = nucleotide diversity.
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Fig. 3. Mismatch distribution observed in mitochondrial haplotypes of Northern
(A) and Southern (B) invasive populations of Pacific oysters in the Wadden Sea. Dots
and solid lines represent observed distributions and dashed lines show expected values
under a demographic expansion model.
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4.1. Southern group

Interestingly, the Southern group also clusters with the putative
source population from British Columbia and thereby reflects the
documented invasion route from B.C. via aquaculture into the
Oosterschelde and from there to Texel and the Southern Wadden
Sea (Drinkwaard, 1998; Troost, 2010). This group was dominated by
a common basal haplotype (ht05, Fig. 2) accompanied by several
closely related singleton sequences. The resulting star-shaped phy-
logeny is characteristic of expanding populations, which is also
reflected in large negative values of Tajima's D and Fu's F (Table 2)
as well as a unimodal mismatch distribution (Fig. 3B). Interestingly,
we could not detect any significant genetic differentiation even be-
tween the most distantly located populations (i.e. Texel and Büsum)
despite an overall significant but very weak isolation by distance
pattern. Since Büsum reflects the current frontier of the Southern
expansion, this is somewhat surprising as this population must have
gone through several colonization events during the expansion
(Brandt et al., 2008). Haplotype diversity was however as large as on
Texel (Table 2) indicating that sequential sites were colonized by a
large inocculumstemming fromundifferentiated populationswith little
importance of genetic drift or several rounds of colonization from a
common source (Drake et al., 2005). Since recruitment is usually stron-
ger duringwarmyears (Diederich et al., 2005) large inocculum sizes are
likely and thus genetic drift during colonizationmight not have lead to a
substantial loss of genetic variability or differentiation between popula-
tions. For marine bivalve populations relying on external fertilization
such mass settlements may be the rule rather than the exception as
population persistence can only be guaranteed by high initial densities
preventing extensive dilution of gametes.

4.2. Northern group

In contrast, the Northern group was characterized by several me-
dium to high frequency haplotypes, which could not be found at the
base of the phylogeny (Fig. 2). This indicates that oyster seed used
for aquaculture on Sylt most likely originated from crosses of diver-
gent lines not containing the basal haplotype and thereby artificially
amplifying haplotype frequencies of distantly related haplotypes.
Crossing of divergent lines decreases inbreeding depression, which
is common in Pacific oysters due to high genetic load (Launey and
Hedgecock, 2001). Selection for higher growth rates by oyster
breeders might have been facilitated by outbreeding to reduce genet-
ic load of produced spat and increase yield (Hedgecock et al., 1995;
Hedgecock and Davis, 2007). Seed oysters used for aquaculture in
the Northern Wadden Sea presumably came from breeders on the
British Isles. And although aquaculture practice there was also based

on oysters from British Columbia (Syvret et al., 2008) neither aqua-
culture oysters nor invasive populations resembled oysters from
British Columbia (Fig. 5), indicating that the breeders must maintain
a genetically distinct brood stock for spat production.

The Northern populations were characterized by on average seven
times higher values of pairwise genetic differentiation within their
range than the Southern population (Fig. 5), which was mainly driven
by high values differentiating aquaculture from invasive populations.
A similar trend could be observed in the Southern group although on
a much smaller scale (Fig. 5). Large values of genetic differentiation
observed between Northern Wadden Sea populations and their puta-
tive aquaculture source might indicate that genotypes used for regu-
lar, yearly stocking changed since the first successful spatfalls in the
1990s. For example, haplotype ht66 only occurred at intermediate

Table 3
Pairwise genetic differentiation (FST) between all population pairs.

E SN Saq SS N B W T O BC

E -
SN −0.012 -
Saq 0.049 0.002 -
SS −0.008 −0.021 0.075 -
N 0.006 0.050 0.149 −0.012 -

(*)
B 0.043 0.071 0.087 0.085 0.078 -

(*) (*) (*) (*) (*)
W 0.055 0.080 0.094 0.109 0.111 −0.005 -

(*) (*) (*)
T 0.061 0.086 0.099 0.109 0.107 −0.005 −0.008 -

(*) (*) (*) (*)
O 0.064 0.095 0.108 0.113 0.107 0.001 −0.002 −0.007 -

(*) (*) (*) (*) (*)
BC 0.057 0.084 0.105 0.111 0.113 −0.007 −0.012 −0.019 −0.017 -

(*) = significant after Bonferroni correction, E = Esbjerg, SN = Sylt North, Saq = Sylt Aquaculture, SS = Sylt South, N= Nordstrand, B = Büsum, W=Willhelmshaven, T = Texel,
O = Oosterschelde, BC = British Columbia.
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frequency of 15% in the northern aquaculture oysters and could not
be observed in any wild population (Figs. 2, 4) suggesting that this
haplotype might have been introduced by recent stocking events.
Nevertheless, the differentiation along axis 2 of the haplotype ordina-
tion (Fig. 4) as well as the significant increase of genetic differentia-
tion (FST) with distance between aquaculture and naturalized
populations suggests that the current farm broodstock still has an im-
pact on the surrounding wild populations in the Northern Wadden
Sea. Similar phenomena are unlikely in the Southern Wadden Sea
since no commercially produced spat was introduced since the
1970s. That genetic drift alone causes the observed patterns in the
Northern group seems unlikely because of their magnitude in com-
parison to the Southern Wadden Sea. Furthermore, no isolation by
distance pattern could be observed between naturalized populations
indicating that gene flow is sufficient or genetic drift is too weak to
cause genetic differentiation on the observed time scales. Such per-
sisting input of new genetic material can also lead to different signa-
tures of population expansion. While the southern populations show
clear signs of expanding populations (i.e. star-shaped phylogeny,
large negative values of Fu's F owing to input of new mutations),
the northern populations lack such a signature. Also the observed
multi-peaked mismatch distribution suggests that the northern oys-
ter population has been stable for some time (Fig. 3). There is howev-
er no doubt that the northern Wadden sea is also characterized by
similarly high population growth rates and range expansion as in
the south (Diederich et al., 2005). However, multi-peaked mismatch
distributions can also arise from admixture between divergent mito-
chondrial lineages (Simon-Bouhet et al., 2006) suggesting that input
of divergent mitochondrial lineages from farmed oysters formed the
initial starting material and also happened over time. This suggests
that the population genetic demographic patterns of invasive popula-
tions are influenced to a large degree by the genetic starting material
and the temporal sequence in which new genetic material is
disseminated.

4.3. Implications and conclusions

Strong discrepancy between genetic differentiation measured
with mitochondrial markers and genetic differentiation measured
with nuclear markers has previously been observed for marine spe-
cies (Larmuseau et al., 2010) demonstrating that processes like sex
biased dispersal can influence differentiation estimates. Although mi-
tochondrial discontinuities have been reported for American oysters
C. virginica (Reeb and Avise, 1990) selectively neutral autosomal
markers are unlikely to reveal different patterns of genetic differenti-
ation, because oysters are hermaphrodites making sex-biased dis-
persal unlikely for Pacific oysters. Since the two invasions now
potentially form a secondary contact zone, admixture of the gene
pools and directional introgression could also influence the adaptive
and invasive potential of Pacific oysters in the Wadden Sea. In
this context it is highly interesting that Southern populations
encountered strong selection by summer mortality with adult
mortalitiesN60% (Watermann et al., 2008) from which Northern
populations have been spared so far. Northern populations did how-
ever suffer from temperature dependent winter mortality during
the last years (Büttger et al., in press). It will be a very interesting av-
enue of research to investigate how these previous divergent selec-
tion events as well as genetic admixture will impact patterns of
directed introgression in the face of hard selection by biotic and abi-
otic conditions encountered in the face rapidly adapting competitors,
predators and parasites as well as of advancing global warming.
Therefore, it will be interesting to investigate oyster invasions with
autosomal markers to identify genomic regions under selection dur-
ing invasion.

In conclusion, our genetic data can reconstruct the demographic
history of invasive populations of the Pacific oyster in the Wadden

Sea and highlights the importance of invasion genetics to understand
biological invasions in general (Geller et al., 2010; Lee, 2002). While
both invasions happened during a similar time frame they neverthe-
less differ strongly from each other in terms of genetic diversity and
differentiation patterns. These differences arise primarily from two
decisive reasons. First of all, broodstock production for Northern
aquaculture uses strains containing different and divergent mito-
chondrial lineages thereby altering the starting material for invasion.
Secondly, and more importantly, we present three lines of evidence
that aquaculture practice in the North has persisting implications on
the genetic make-up of invasive populations. The choice of brood-
stock used in oyster hatcheries influenced the population genetic/
demographic parameters (Table 2, Fig. 3) and haplotype frequencies
as well as genetic differentiation between the farm and invasive popu-
lations suggesting a continuous influence of imported oyster seed on
invasive populations. Therefore, the Northern populations close to the
farm can be characterized as open populations with a changing input
of new genetic material arising from changing broodstock strains,
while the southern population seems to be closed in terms of input of
new genetic material thereby solely relying on mutation as source for
new genetic material. This demonstrates two aspects in which aquacul-
ture practice can influence the characteristics of biological invasions by
a) determining the starting material as well as b) providing continuous
input into naturalized populations, thus resembling repeated invasions
and admixture from genetically diverse sources (Kelly et al., 2006;
Simon-Bouhet et al., 2006). Repeated genetic impact of aquaculture
has been demonstrated for natural populations (McGinnity et al.,
1997), but is actually scarce for invasive populations derived fromaqua-
culture sources as demonstrated here for the case of Pacific oysters.
Environmental and fisheries management will be confronted with the
question whether the current practice of repeated, ongoing oyster
introductions may carry an intolerable risk.
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