The role of the N-acetylglucosamine phosphoenolpyruvate phosphotransferase system from Lactobacillus plantarum 8014 in the mechanism of action of glycocin F : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Manawatū, New Zealand

Loading...
Thumbnail Image
Date
2017
DOI
Open Access Location
Journal Title
Journal ISSN
Volume Title
Publisher
Massey University
Rights
The Author
Abstract
The rise in antibiotic-resistant bacteria is becoming a severe public health problem because of the shortage of new antibiotics to combat existing resistant bacterial pathogens. Should this trend of increasing bacterial drug resistance continue, the previously treatable conditions may once again become fatal. Using broad-spectrum antibiotics causes collateral damage to the commensal microbiota of the host leading to complications and a greater susceptibility to opportunistic pathogenic infection. As a result, narrow spectrum antibacterials effective against specific pathogens, are becoming increasingly sought after. Among the many alternative classes of narrow-spectrum antibiotics, is a diverse group of ribosomally-synthesised antimicrobial peptides known as bacteriocins. Glycocin F (GccF), a rare and uniquely diglycosylated bacteriocin produced by Lactobacillus plantarum KW80, appears to target a specific N-acetylglucosamine (GlcNAc) phosphotransferase system (PTS) and causes almost instant bacteriostasis by an as yet unknown mechanism. This thesis demonstrates how the GlcNAc-PTS is involved in the GccF mechanism of action and that the gccH gene provides immunity to GccF. Using transgenic and gene editing techniques, regions of the GlcNAc-PTS were either removed or altered to prevent normal function before being tested in vivo. The results demonstrated that only the EIIC domain of the GlcNAc-PTS is required in the GccF mechanism of action and that it acts like a "lure" that attracts the bacteriocin to the main target that is as yet unknown. Furthermore, the immunity gene was discovered, and using PTS knockout cell lines the immunity mechanism was shown to act independently of the GlcNAc-PTS. This work will form the foundation for the work needed to unravel the bacteriostatic mechanism of action of GccF, which may lead to the development a novel antimicrobial agent.
Description
Keywords
Bacteriocins, Transferases, Lactobacillus plantarum, Research Subject Categories::NATURAL SCIENCES::Chemistry::Biochemistry
Citation