Please use this identifier to cite or link to this item: https://hdl.handle.net/10216/120363
Author(s): Dias F.
Antunes J.T.
Ribeiro T.
Azevedo J.
Vasconcelos V.
Leão P.N.
Title: Cyanobacterial allelochemicals but not cyanobacterial cells markedly reduce microbial community diversity
Publisher: Frontiers Media
Issue Date: 2017
Abstract: The freshwater cyanobacterium Phormidium sp. LEGE 05292 produces allelochemicals, including the cyclic depsipeptides portoamides, that influence the growth of heterotrophic bacteria, cyanobacteria, and eukaryotic algae. Using 16S rRNA gene amplicon metagenomics, we show here that, under laboratory conditions, the mixture of metabolites exuded by Phormidium sp. LEGE 05292 markedly reduces the diversity of a natural planktonic microbial community. Exposure of the same community to the portoamides alone resulted in a similar outcome. In both cases, after 16 days, alpha-diversity estimates for the allelochemical-exposed communities were less than half of those for the control communities. Photosynthetic organisms, but also different heterotrophic-bacteria taxa were found to be negatively impacted by the allelochemicals. Intriguingly, when Phormidium sp. LEGE 05292 was co-cultured with the microbial community, the latter remained stable and closer to non-exposed than to allelochemical-exposed communities. Overall, our observations indicate that although under optimal growth conditions Phormidium sp. LEGE 05292 is able to synthesize potent allelochemicals that severely impact different microorganisms, its allelopathic effect is not pronounced when in contact with a complex microbial community. Therefore, under ecologically relevant conditions, the allelopathic behavior of this cyanobacterium may be regulated by nutrient availability or by interactions with the surrounding microbiota. Copyright © 2017 Dias, Antunes, Ribeiro, Azevedo, Vasconcelos and Leão.
Subject: RNA 16S
acclimatization
Article
column chromatography
cyanobacterium
DNA extraction
electrospray
high performance liquid chromatography
metagenomics
microbial community
nonhuman
nutrient availability
sequence analysis
URI: https://hdl.handle.net/10216/120363
Source: Frontiers in Microbiology, vol. 8:1495
Related Information: info:eu-repo/grantAgreement/FCT/5876/147268/PT
Document Type: Artigo em Revista Científica Internacional
Rights: openAccess
Appears in Collections:CIIMAR - Artigo em Revista Científica Internacional

Files in This Item:
File Description SizeFormat 
Dias F_2017.pdf1.95 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.