• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
  • Contacto
  • Sugerencias
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Gredos. Repositorio documental de la Universidad de SalamancaUniversidad de Salamanca
    Consorcio BUCLE Recolector

    Listar

    Todo GredosComunidades y ColeccionesPor fecha de publicaciónAutoresMateriasTítulosEsta colecciónPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    ENLACES Y ACCESOS

    Derechos de autorPolíticasGuías de autoarchivoFAQAdhesión USAL a la Declaración de Berlín

    COMPARTIR

    Ver ítem 
    •   Gredos Principal
    • Repositorio Científico
    • Departamentos
    • Ciencias Experimentales
    • Departamento Física Aplicada
    • DFA. Tesis del Departamento de Física Aplicada
    • Ver ítem
    •   Gredos Principal
    • Repositorio Científico
    • Departamentos
    • Ciencias Experimentales
    • Departamento Física Aplicada
    • DFA. Tesis del Departamento de Física Aplicada
    • Ver ítem

    Compartir

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Título
    Monte Carlo analysis of Gunn Oscillations and thermal effects in GaN-Based devices
    Otros títulos
    Estudio Monte Carlo de Oscilaciones Gunn y Efectos Térmicos en Dispositivos Basados en GaN
    Autor(es)
    García Sánchez, Sergio
    Director(es)
    Pérez Santos, María SusanaAutoridad USAL ORCID
    Íñiguez de la Torre Mulas, IgnacioAutoridad USAL ORCID
    Palabras clave
    Tesis y disertaciones académicas
    Universidad de Salamanca (España)
    Tesis Doctoral
    Academic dissertations
    Monte-Carlo, Método de
    Gunn, Efecto
    Modelos térmicos
    Clasificación UNESCO
    3307.90 Microelectrónica
    22 Física
    Fecha de publicación
    2015
    Resumen
    [EN]In recent years, the development of GaN technology has made significant inroads into high-power and high-frequency applications with respect to other semiconductor competitors such as GaAs or InP. In this dissertation, by means of an in-house Monte Carlo tool, we study the possibility of generating Gunn oscillations through vertical n+nn+ (without notch) and n+n-nn+ (notched) diodes based on InP and GaN with different lengths of the active region and two doping profiles. In general, when the notch accomplishes its role of fixing the onset of charge accumulation near the cathode, the oscillations are of lower frequency and power. For InP-based diodes, the fundamental frequency reaches 140 GHz (notched, L=1.2 μm) and 400 GHz (without notch, L=0.75 μm). For the GaN-based diode with an active length L=1.5 μm, despite the fact that the fundamental harmonic is around 100 GHz, the power spectral density for the 10th harmonic ( 1 THz) is still significant. InP diodes with L=0.9 μm offer an efficiency (η) of up to 5.5 % for frequencies around 225 GHz. The generation bands in GaN diodes appear at higher frequencies (up to 675 GHz with η=0.1 %) than in InP. When circuits work at high powers, thermal models become essential to determine temperature limits with a view to preventing device failure, thus reducing manufacturing costs. In order to include thermal effects in our Monte Carlo code, two techniques have been implemented: (i) a thermal resistance method (TRM), and (ii) an advanced electrothermal model that solves the steady-state heat diffusion equation, called HDEM. We calibrate/validate our simulator by comparison with experimental measurements of an AlGaN/GaN diode. For the TRM, several thermal resistance values are employed, and for the HDEM different substrates (polycrystalline diamond, diamond, carbide silicon, silicon and sapphire), thicknesses and die lengths are tested. In addition, we include the effect of thermal boundary resistance. Using temperature-independent thermal conductivity in the HDEM allows us to extract an equivalent thermal resistance, Rth, for each geometry and substrate material. The extracted Rth values are constant with the dissipated power, Pdiss. However, when a more real temperature-dependent thermal conductivity is employed, Rth exhibits a strong dependence on Pdiss. As final test device, we analyse for an HEMT, the effect of (i) the heat-sink temperature and (ii) gate-length, through electrothermal simulations.
    URI
    http://hdl.handle.net/10366/129407
    DOI
    10.14201/gredos.129407
    Aparece en las colecciones
    • PDFAT. Física Aplicada y Tecnología [42]
    • DFA. Tesis del Departamento de Física Aplicada [47]
    • TD. Ciencias experimentales [436]
    • GINEAF. Tesis [5]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    DFA_GarciaSanchezS_ModelosTérmicos.pdf
    Tamaño:
    10.15Mb
    Formato:
    Adobe PDF
    Descripción:
    Tesis
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Resumen_Espaniol_SergioGarciaSanchez.pdf
    Tamaño:
    4.019Mb
    Formato:
    Adobe PDF
    Descripción:
    Resumen en español
    Thumbnail
    Visualizar/Abrir
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA