Compartir
Citas
Título
Solar Volumetric Receiver Coupled to a Parabolic Dish: Heat Transfer and Thermal Efficiency Analysis
Autor(es)
Palabras clave
Concentrated Solar Power
Solar receiver
Heat transfer
Parabolic dish
Distributed energy
Fecha de publicación
2023
Resumen
[EN]Concentrated Solar Power plants are commonly recognized as one of the most attractive options within carbon
free power generation technologies because their high efficiency and also because implementation of
hybridization and/or storage is feasible. In this work a small-scale system focused on distributed production,
in the range of kWe (5kWe to 30kWe), is modeled. A parabolic dish collects direct solar power towards a
receiver located at its focus. There, the heat transfer fluid increases its temperature for thermal storage or
for directly producing electricity at the power block. Thus, this is a crucial component in CSP systems since
it greatly influences global efficiency. There is a trade-off in the energy balance within the thermal receiver,
since the higher the temperatures it achieves, the higher the radiation losses could be. In this work, a heat
transfer analysis for an air volumetric receiver coupled to a parabolic dish is carried out. The solar receiver
is modeled under steady-state conditions using a detailed set of equations. The model considers the main
losses by convection, conduction and radiation at the glass window and the surrounding insulator. The temperatures
and heat transfers along the different receiver zones are computed with a built from scratch in-house
code programmed in Mathematica®. The thermal efficiency mainly depends on the incoming solar irradiance
at the glass window, the receiver geometry and the type of materials considered, as well as on the ambient
temperature. It is expected that this model (precise but not too expensive from the computational viewpoint)
could help to identify the main bottlenecks,
URI
DOI
10.52202/069564-0030
Versión del editor
Aparece en las colecciones
- GIOETFE. Artículos [62]