• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
  • Contacto
  • Sugerencias
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Gredos. Repositorio documental de la Universidad de SalamancaUniversidad de Salamanca
    Consorcio BUCLE Recolector

    Listar

    Todo GredosComunidades y ColeccionesPor fecha de publicaciónAutoresMateriasTítulosEsta colecciónPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    ENLACES Y ACCESOS

    Derechos de autorPolíticasGuías de autoarchivoFAQAdhesión USAL a la Declaración de Berlín

    COMPARTIR

    Ver ítem 
    •   Gredos Principal
    • Repositorio Científico
    • Institutos Universitarios
    • Instituto Interuniversitario de Neurociencias de Castilla y León (INCyL)
    • INCyL. Unidad de Excelencia iBRAINS-IN-CyL
    • Ver ítem
    •   Gredos Principal
    • Repositorio Científico
    • Institutos Universitarios
    • Instituto Interuniversitario de Neurociencias de Castilla y León (INCyL)
    • INCyL. Unidad de Excelencia iBRAINS-IN-CyL
    • Ver ítem

    Compartir

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Article has an altmetric score of 1
    Plum Print visual indicator of research metrics
    plumX logo
    • Citations
      • Citation Indexes: 9
    • Captures
      • Readers: 56
    • Mentions
      • Blog Mentions: 1
    see details
    Título
    Identification of Internal Defects in Potato Using Spectroscopy and Computational Intelligence Based on Majority Voting Techniques
    Autor(es)
    Imanian, Kamal
    Pourdarbani, Razieh
    Sabzi, Sajad
    García-Mateos, Ginés
    Arribas, Juan Ignacio
    Molina-Martínez, José Miguel
    Palabras clave
    potato
    spectroscopy
    internal defect
    majority voting
    Clasificación UNESCO
    3102 Ingeniería Agrícola
    3302.90 Ingeniería Bioquímica
    Fecha de publicación
    2021-04-30
    Resumen
    Potatoes are one of the most demanded products due to their richness in nutrients. However, the lack of attention to external and, especially, internal defects greatly reduces its marketability and makes it prone to a variety of diseases. The present study aims to identify healthy-looking potatoes but with internal defects. A visible (Vis), near-infrared (NIR), and short-wavelength infrared (SWIR) spectrometer was used to capture spectral data from the samples. Using a hybrid of artificial neural networks (ANN) and the cultural algorithm (CA), the wavelengths of 861, 883, and 998 nm in Vis/NIR region, and 1539, 1858, and 1896 nm in the SWIR region were selected as optimal. Then, the samples were classified into either healthy or defective class using an ensemble method consisting of four classifiers, namely hybrid ANN and imperialist competitive algorithm (ANN-ICA), hybrid ANN and harmony search algorithm (ANN-HS), linear discriminant analysis (LDA), and k-nearest neighbors (KNN), combined with the majority voting (MV) rule. The performance of the classifier was assessed using only the selected wavelengths and using all the spectral data. The total correct classification rates using all the spectral data were 96.3% and 86.1% in SWIR and Vis/NIR ranges, respectively, and using the optimal wavelengths 94.1% and 83.4% in SWIR and Vis/NIR, respectively. The statistical tests revealed that there are no significant differences between these datasets. Interestingly, the best results were obtained using only LDA, achieving 97.7% accuracy for the selected wavelengths in the SWIR spectral range.
    URI
    http://hdl.handle.net/10366/154867
    DOI
    10.3390/foods10050982
    Versión del editor
    https://doi.org/10.3390/foods10050982
    Aparece en las colecciones
    • INCyL. Unidad de Excelencia iBRAINS-IN-CyL [88]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Identification of Internal Defects in Potato Using Spectroscopy and Computational Intelligence Based on Majority Voting Techniques.pdf
    Tamaño:
    4.139Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo principal
    Thumbnail
    Visualizar/Abrir
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA