Compartir
Título
Virtual cyclic cellular automata, finite group actions and recursive properties
Autor(es)
Palabras clave
Elementary cellular automata
Reversibility
Rule 150
Cyclic cellular automata
Recursive rule
Wolfram number
Clasificación UNESCO
12 Matemáticas
Fecha de publicación
2022
Editor
Elsevier
Citación
Hernández Serrano, D., & Martín Del Rey, A. (2022). Virtual cyclic cellular automata, finite group actions and recursive properties. Information Sciences, 608, 917-930. https://doi.org/10.1016/j.ins.2022.07.007
Resumen
[EN] The aim of these notes is three fold. First we introduce virtual cyclic cellular automata and
show that the inverse of a reversible 2ð Þ R þ 1 -cyclic cellular automaton with periodic
boundary conditions is a virtual cyclic cellular automaton. These virtual automata have
two special characteristics: they have active and non active cells at specific steps of times
and they reflect certain periodicity. We will relate these particularities with a finite cyclic
group action on the cellular automaton, and prove that the inverse transition dipolynomial
is an invariant dipolynomial under this action. Secondly, we use a recursive estimation of
neighbours (REN) algorithm to produce direct examples of virtual cyclic cellular automata,
which moreover generalize some of the cellular automata used in applications like collective control or traffic patterns. We also propose a new REN algorithm which allows us to
reinterprete a 2ð Þ R þ 1 -cyclic cellular automata as a recursive sequence originated from
the elementary cellular automaton with base rule 150, and which motivate us to introduce
a new notion of a recursive Wolfram number for a 2ð Þ R þ 1 -cyclic cellular automaton.
Finally we show that this recursive Wolfram number can be computed by the new REN
algorithm applied to the base rule 150 and its complementary 105 rule.
URI
ISSN
0020-0255
DOI
10.1016/j.ins.2022.07.007
Versión del editor
Aparece en las colecciones
Patrocinador
Publicación en abierto financiada por la Universidad de Salamanca como participante en el Acuerdo Transformativo CRUE-CSIC con Elsevier, 2021-2024