Compartir
Título
Automated Road Damage Detection Using UAV Images and Deep Learning Techniques
Autor(es)
Palabras clave
Drones
Inspection
Deep learning
Monitoring
UAV
Road damage detection
Deep learning
Object-detection
Fecha de publicación
2023-06-19
Editor
IEEE
Citación
Silva, L. A., Leithardt, V. R. Q., Batista, V. F., Villarrubia Gonzalez, G., & De Paz Santana, J. F. (2023). Automated Road Damage Detection Using UAV Images and Deep Learning Techniques. IEEE Access, 11, 62918-62931. https://doi.org/10.1109/ACCESS.2023.3287770
Serie / N.º
IEEE Access,;Volume 11
Resumen
[EN]This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head, and 73.20% mAP@.5 for the YOLOv7 version. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.
URI
ISSN
2169-3536
Versión del editor
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
4.052Mb
Formato:
Adobe PDF
Descripción:
Artículo principal