• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
  • Contacto
  • Sugerencias
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Gredos. Repositorio documental de la Universidad de SalamancaUniversidad de Salamanca
    Consorcio BUCLE Recolector

    Listar

    Todo GredosComunidades y ColeccionesPor fecha de publicaciónAutoresMateriasTítulosEsta colecciónPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    ENLACES Y ACCESOS

    Derechos de autorPolíticasGuías de autoarchivoFAQAdhesión USAL a la Declaración de Berlín

    COMPARTIR

    Ver ítem 
    •   Gredos Principal
    • Repositorio Científico
    • Grupos de Investigación
    • BISITE. Bioinformática, Sistemas Informáticos Inteligentes y Tecnología Educativa
    • BISITE. Artículos
    • Ver ítem
    •   Gredos Principal
    • Repositorio Científico
    • Grupos de Investigación
    • BISITE. Bioinformática, Sistemas Informáticos Inteligentes y Tecnología Educativa
    • BISITE. Artículos
    • Ver ítem

    Compartir

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Article has an altmetric score of 1
    Título
    ANCES: A novel method to repair attribute noise in classification problems
    Autor(es)
    Sáez, José A.
    Corchado Rodríguez, Emilio SantiagoAutoridad USAL
    Palabras clave
    Attribute noise
    Noise correction
    Noise filtering
    Noisy data
    Classification
    Clasificación UNESCO
    1203.04 Inteligencia Artificial
    Fecha de publicación
    2022-01
    Editor
    Elsevier
    Citación
    José A. Sáez, Emilio Corchado, ANCES: A novel method to repair attribute noise in classification problems, Pattern Recognition, Volume 121, 2022, 108198, ISSN 0031-3203, https://doi.org/10.1016/j.patcog.2021.108198. (https://www.sciencedirect.com/science/article/pii/S0031320321003800)
    Resumen
    [EN]Noise negatively affects the complexity and performance of models built in classification problems. The most common approach to mitigate its consequences is the usage of preprocessing techniques, known as noise filters, which are designed to remove noisy samples from the training data. Nevertheless, they are specifically oriented to deal with errors affecting class labels. Their employment may not always result in an improvement when noise affects attribute values. In these cases, correcting the errors is an interesting alternative to traditional noise filtering that has not been enough studied so far in the specialized literature. This research proposes an attribute noise correction method with the final aim of increasing the performance of the classification algorithms used later. The identification of noisy data is based on an error score assigned to each one of the attribute values in the dataset, which are then passed through an optimization process to correct their potential noise. The validity of the proposed method is studied in an exhaustive experimental study, in which it is compared to several well-known preprocessing methods to deal with noisy datasets. The results obtained show the suitability of attribute noise correction with respect to the other alternatives when data suffer from attribute noise.
    URI
    http://hdl.handle.net/10366/161964
    ISSN
    0031-3203
    DOI
    10.1016/j.patcog.2021.108198
    Versión del editor
    https://doi.org/10.1016/j.patcog.2021.108198
    Aparece en las colecciones
    • BISITE. Artículos [324]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    BISITE-CORCHADOEMILIO_ANCES.pdf
    Tamaño:
    1.008Mb
    Formato:
    Adobe PDF
    Descripción:
    Artículo Revista Internacional
    Thumbnail
    Visualizar/Abrir
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA