• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
  • Contacto
  • Sugerencias
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Gredos. Repositorio documental de la Universidad de SalamancaUniversidad de Salamanca
    Consorcio BUCLE Recolector

    Listar

    Todo GredosComunidades y ColeccionesPor fecha de publicaciónAutoresMateriasTítulosEsta colecciónPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    ENLACES Y ACCESOS

    Derechos de autorPolíticasGuías de autoarchivoFAQAdhesión USAL a la Declaración de Berlín

    COMPARTIR

    Ver ítem 
    •   Gredos Principal
    • Repositorio Científico
    • Departamentos
    • Ciencias Experimentales
    • Departamento Estadística
    • DES. Artículos del Departamento de Estadística
    • Ver ítem
    •   Gredos Principal
    • Repositorio Científico
    • Departamentos
    • Ciencias Experimentales
    • Departamento Estadística
    • DES. Artículos del Departamento de Estadística
    • Ver ítem

    Compartir

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Article has an altmetric score of 1
    Título
    Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
    Autor(es)
    Antúnez-Muiños, Pablo
    Vicente Palacios, Víctor
    Pérez-Sánchez, Pablo
    Sampedro-Gómez, Jesús
    Sánchez-Puente, Antonio
    Dorado-Díaz, Pedro Ignacio
    Nombela-Franco, Luis
    Salinas, Pablo
    Gutiérrez-García, Hipólito
    Amat-Santos, Ignacio
    Peral, Vicente
    Morcuende, Antonio
    Asmarats, Lluis
    Freixa, Xavier
    Regueiro, Ander
    Caneiro-Queija, Berenice
    Estevez-Loureiro, Rodrigo
    Rodés-Cabau, Josep
    Sánchez Fernández, Pedro LuisAutoridad USAL
    Cruz González, IgnacioAutoridad USAL
    Palabras clave
    Left atrial appendage closure
    Device-related thrombosis
    Atrial fibrillation
    Machine learning
    Multivariable analysis
    Predictors
    Fecha de publicación
    2022-08-30
    Editor
    MDPI
    Citación
    Antúnez-Muiños, P.; Vicente-Palacios, V.; Pérez-Sánchez, P.; Sampedro-Gómez, J.; Sánchez-Puente, A.; Dorado-Díaz, P.I.; Nombela-Franco, L.; Salinas, P.; Gutiérrez-García, H.; Amat-Santos, I.; et al. Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods. J. Pers. Med. 2022, 12, 1413. https://doi.org/10.3390/jpm12091413
    Resumen
    [EN]Device-related thrombus (DRT) after left atrial appendage (LAA) closure is infrequent but correlates with an increased risk of thromboembolism. Therefore, the search for DRT predictors is a topic of interest. In the literature, multivariable methods have been used achieving non-consistent results, and to the best of our knowledge, machine learning techniques have not been used yet for thrombus detection after LAA occlusion. Our aim is to compare both methodologies with respect to predictive power and the search for predictors of DRT. To this end, a multicenter study including 1150 patients who underwent LAA closure was analyzed. Two lines of experiments were performed: with and without resampling. Multivariate and machine learning methodologies were applied to both lines. Predictive power and the extracted predictors for all experiments were gathered. ROC curves of 0.5446 and 0.7974 were obtained for multivariate analysis and machine learning without resampling, respectively. However, the resampling experiment showed no significant difference between them (0.52 vs. 0.53 ROC AUC). A difference between the predictors selected was observed, with the multivariable methodology being more stable. These results question the validity of predictors reported in previous studies and demonstrate their disparity. Furthermore, none of the techniques analyzed is superior to the other for these data.
    URI
    http://hdl.handle.net/10366/162034
    ISSN
    2075-4426
    DOI
    10.3390/jpm12091413
    Versión del editor
    https://doi.org/10.3390/jpm12091413
    Aparece en las colecciones
    • DES. Artículos del Departamento de Estadística [96]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    pidd_Predictive_Power_for_Thrombus_Detection_after_Atrial_Appendage_Closure._Machine_Learning_vs._Classical_Methods.pdf
    Tamaño:
    1.726Mb
    Formato:
    Adobe PDF
    Descripción:
    Predictive_Power_for_Thrombus_Detection_after_Atrial_Appendage_Closure._Machine_Learning_vs._Classical_Methods
    Thumbnail
    Visualizar/Abrir
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA
     
    Universidad de Salamanca
    AVISO LEGAL Y POLÍTICA DE PRIVACIDAD
    2024 © UNIVERSIDAD DE SALAMANCA