Publications

Detailed Information

Targeted inactivation of transcription factors by overexpression of their truncated forms in plants

Cited 20 time in Web of Science Cited 24 time in Scopus
Authors

Seo, Pil Joon; Hong, Shin-Young; Ryu, Jae Yong; Jeong, Eun-Young; Kim, Sang-Gyu; Baldwin, Ian T.; Park, Chung-Mo

Issue Date
2012-10
Publisher
Blackwell Publishing Inc.
Citation
Plant Journal, Vol.72 No.1, pp.162-172
Abstract
Transcription factors are central constituents of gene regulatory networks that control diverse aspects of plant development and environmental adaptability. Therefore they have been explored for decades as primary targets for agricultural biotechnology. A gene of interest can readily be introduced into many crop plants, whereas targeted gene inactivation is practically difficult in many cases. Here, we developed an artificial small interfering peptide (a-siPEP) approach, which is based on overexpression of specific protein domains, and evaluated its application for the targeted inactivation of transcription factors in the dicot model, Arabidopsis, and monocot model, Brachypodium. We designed potential a-siPEPs of two representative MADS box transcription factors, SUPPRESSOR OF OVEREXPRESSOR OF CONSTANS 1 (SOC1) and AGAMOUS (AG), and a MYB transcription factor, LATE ELONGATED HYPOCOTYL (LHY). Transgenic plants overproducing the a-siPEPs displayed phenotypes comparable to those of gene-deficient mutants. The a-siPEPs attenuate nuclear import and DNA-binding of target transcription factors. Our data demonstrate that the a-siPEP tool is an efficient genetic means of inactivating specific transcription factors in plants.
ISSN
0960-7412
URI
https://hdl.handle.net/10371/172041
DOI
https://doi.org/10.1111/j.1365-313X.2012.05069.x
Files in This Item:
There are no files associated with this item.
Appears in Collections:

Altmetrics

Item View & Download Count

  • mendeley

Items in S-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

Share