Maintenance prévue aujourd'hui de 11h30 à 12h00 (EST). Veuillez éviter les soumissions pendant cette période. Nous nous excusons pour tout inconvénient | Scheduled maintenance today from 11:30 to 12:00 PM (EST). Please avoid submissions during this time. Apologies for any inconvenience.
Repository logo
 

Bladed Disk Crack Detection Through Advanced Analysis of Blade Passage Signals

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Université d'Ottawa / University of Ottawa

Abstract

Crack initiation and propagation in the bladed disks of aero-engines caused by high-cycle fatigue under cyclic loads could result in the breakdown of the engines if not detected at an early stage. Although a number of fault detection methods have been reported in the literature, it still remains very challenging to develop a reliable online technique to accurately diagnose defects in bladed disks. One of the main challenges is to characterize signals contaminated by noises. These noises caused by very dynamic engine operation environment. This work presents a new technique for engine bladed disk crack detection, which utilizes advanced analysis of clearance and time-of-arrival signals acquired from blade tip sensors. This technique involves two stages of signal processing: 1) signal pre-processing for noise elimination from predetermined causes; and 2) signal post-processing for characterizing crack initiation and location. Experimental results from the spin rig test were used to validate technique predictions.

Description

Keywords

crack detection, turbo fan engine, bladed disk, signal processing, wavelet analysis, detrended fluctuation analysis, feature extraction

Citation