Nanofiltration and selective crystallisation as technologies for the recovery of chemicals from seawater desalination brine to be used as ingredients for Bio-based fertilisers


Published: Nov 30, 2023
Keywords:
Nutrient Recovery, Seawater Desalination Brine.
Spyridon Katsiolis
https://orcid.org/0009-0003-1846-7848
Maria Kyriazi
https://orcid.org/0009-0007-7098-5633
Jelica Novakovic
https://orcid.org/0000-0003-0675-288X
Ioanna Georgia Athanasoulia
Dimitris Malamis
Abstract

The majority of companies that operate desalination units produce significant quantities of brine, a hypersaline product whose disposal in the sea contributes to the degradation of local fauna and flora. The proposed process for the valorisation of seawater brine and recovery of high purity water consists of two precipitation steps for the recovery of Mg(OH)2 and CaCO3. After pH conditioning, the brine (without Mg2+ and Ca2+) is led to Nanofiltration unit for Na2SO4 separation from the NaCl - KCl rich stream. Monovalent salt stream is further concentrated by Multiple Effect Distillation evaporator and crystallizer and KCl is separated from NaCl by flotation using Sodium Dodecyl Sulfate as floating agent. The aforementioned micronutrients have readily been tested for their part in enhancing the agronomic performance of fertilising products, so they possess market potential to support local/national/European fertilisation purposes. Last but not least, such a nutrient recovery approach can ensure capital recovery within the expected time limitations of an investment and in some cases offset completely the treatment cost.

Article Details
  • Section
  • Circular Economy
Downloads
Download data is not yet available.
References
Hincks S., Carter J., Connelly A., A new typology of climate change risk for European cities and regions: Principles and applications, Global Environmental Change 83, 102767 (2023) https://doi.org/10.1016/j.gloenvcha.2023.102767.
Knapp M., Teder T., Lukas V., Štrobl M., Knappová J., Landis D.A., González E., Ecologically-Informed Precision Conservation: A framework for increasing biodiversity in intensively managed agricultural landscapes with minimal sacrifice in crop production, Biological Conservation 288, 110343 (2023) https://doi.org/10.1016/j.biocon.2023.110343.
Manghi M.C., Masiol M., Calzavara R., Graziano P.L., Peruzzi E., Pavoni B., The use of phosphonates in agriculture. Chemical, biological properties and legislative issues, Chemosphere, 283, 131187 (2021) https://doi.org/10.1016/j.chemosphere.2021.131187.
Egan A., Saju A., Sigurnjak I., Meers E., Power N., What are the desired properties of recycling-derived fertilisers from an end-user perspective?, Cleaner and Responsible Consumption 5, 100057 (2022) https://doi.org/10.1016/j.clrc.2022.100057.
Ersahin M.E., Cicekalan B., Cengiz A.I., Zhang X., Ozgun H.: Nutrient recovery from municipal solid waste leachate in the scope of circular economy: Recent developments and future perspectives, Journal of Environmental Management, 335, 117518, (2023) https://doi.org/10.1016/j.jenvman.2023.117518.
Achilleos, P., Roberts, K., & Williams, I., Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity? Heliyon, e09862 (2022)
Luo Q., Xiang Y., Yang Q., Te Liang T., Xie Y.: Molecular simulation of calcium-silicate-hydrate and its applications: A comprehensive review, Construction and Building Materials 409, 134137, (2023) https://doi.org/10.1016/j.conbuildmat.2023.134137.
Deng L., Ngo H.-H., Guo W., Wang J., Zhang H.: Evaluation of a new sponge addition-microbial fuel cell system for removing nutrient from low C/N ratio wastewater, Chem. Eng. J. (2018).
Yang Z., Pei H., Hou Q., Jiang L., Zhang L., Nie C.: Algal biofilm-assisted microbial fuel cell to enhance domestic wastewater treatment: nutrient, organics removal and bioenergy production, Chem. Eng. J. 332, 277–285 (2018).
Hušek M., Moško J., Pohořelý M.: Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art, Journal of Environmental Management 315, 115090 (2022) https://doi.org/10.1016/j.jenvman.2022.115090.
Cheraghdar A., Jazebizadeh M.H., Mansourizadeh A., Hojjati M.R., Lau W.J.: Liquid-liquid extraction of phenolic wastewater through a surface modified poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactor and process optimization, Journal of the Taiwan Institute of Chemical Engineers, 105111 (2023) https://doi.org/10.1016/j.jtice.2023.105111.
Perera, M. K., Englehardt, J. D., & Dvorak, A. C.: Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environmental Engineering Science, 511-529 (2019).
Tur-Cardona J., Bonnichsen O., Speelman S., Verspecht A., Carpentier L., Debruyne L., Buysse J.: Farmers' reasons to accept bio-based fertilizers: A choice experiment in seven. Journal of Cleaner Production, 406-416 (2018).
Srivastava, V., Vaish, B., Singh, A., & Singh, R. Nutrient recovery from municipal waste stream: status and prospects. In Urban Ecology - Emerging Patterns and Social-Ecological Systems (pp. 265-297). Elsevier (2020).
Preisner, M., Smol, M., Horttanainen, M., Deviatkin, I., Havukainen, J., Klavins, M., Roosalu, K.: Indicators for resource recovery monitoring within the circular economy model implementation in the wastewater sector. Journal of Environmental Management, 114261 (2022).
Avramidi, M.; Spyropoulou, C.; Loizou, C.; Kyriazi, M.; Novakovic, J.; Moustakas, K.; Malamis, D.; Loizidou, M.: Adding Value to Reclaimed Water from Wastewater Treatment Plants: The Environmental Feasibility of a Minimal Liquid Discharge System for the Case Study of Larnaca. Sustainability 15, 14305 (2023) https://doi.org/10.3390/su151914305
Panagopoulos, A.: Brine Management (Saline Water & Wastewater Effluents): Sustainable Utilization and Resource Recovery Strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) Desalination Systems. Chem. Eng. Process.-Process Intensif., 176, 108944 (2022).
Frank, H.; Fussmann, K.E.; Rahav, E.; Zeev, E.B.: Chronic Effects of Brine Discharge from Large-Scale Seawater Reverse Osmosis Desalination Facilities on Benthic Bacteria. Water Res. 151, 478–487 (2019).
Ogunbiyi, O., Saththasivam, J., Al-Masri, D., Manawi, Y., Lawler, J., Zhang, X., & Liu, Z.: Sustainable brine management from the perspectives of water, energy and mineral recovery: A comprehensive review. Desalination, 115055 (2021).
Charisiadis, C.: Zld booklet - Lenntech, A quide to the basic conceptualization of the ZLD/MLD process design and the relative technologies involved. Lenntech- Water Treatment Solutions. Available at: https://www.lenntech.com/Data-sheets/ZLD-booklet-for-Lenntech-site-min-L.pdf, 67-70 (2018).
Smol M.: Transition to circular economy in the fertiliser sector—analysis of recommended directions and end-users’ perception of waste-based products in Poland, Energies 14, 10.3390/en14144312 (2021).
Gorazda, K.; Tarko, B.; Wzorek, Z.; Kominko, H.; Nowak, A.K.; Kulczycka, J.; Henclik, A.; Smol, M.: Fertilisers production from ashes after sewage sludge combustion—A strategy towards sustainable development. Environ. Res. 154, 171–180 (2017).
Ten Hoeve, M.; Bruun, S.; Naroznova, I.; Lemming, C.; Magid, J.; Jensen, L.S.; Scheutz, C.: Life cycle inventory modeling of phosphorus substitution, losses and crop uptake after land application of organic waste products. Int. J. Life Cycle Assess. 23, 1950–1965 (2018).
Alder, P., Markova, E.V., Granovsky, V.: The Design of Experiments to Find Optimal Conditions a Programmed Introduction to the Design of Experiments. Mir Publishers, Moscow (1975).
Allen, T.T.: Introduction to Engineering Statistics and Six Sigma. Springer, Colombus (2007).
Filippov, L. O., Filippova, I. v., Barres, O., Lyubimova, T. P., & Fattalov, O. O..: Intensification of the flotation separation of potash ore using ultrasound treatment. Minerals Engineering 171 (2021). https://doi.org/10.1016/j.mineng.2021.107092
Cochran, W.G., Cox, G.M.: Experimental Designs. WIley, New York (1957).
Seidenfeld, T.: R. A. Fisher on the design of experiments and statistical estimation. 23–36 (1992). https://doi. org/10.1007/978-94-011-2856-8_2.
Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.-G.: Nanotechnology in Eco-efcient Construction. Woodhead Publishing Limited, Swaston (2013).
Selvamuthu, D., Das, D.: Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control. Springer, Singapore (2018).
Cox, D.R., Reid, N.: The Theory of the Design of Experiments. Chapman & Hall CRC, New York (2000).
Kathijotes N., Panayiotou C.: Wastewater reuse for irrigation and seawater intrusion: evaluation of salinity effects on soils in Cyprus. J. Water Reuse Desalin. 3(4), 392–401 (2013).