Deakin University
Browse

File(s) stored somewhere else

Please note: Linked content is NOT stored on Deakin University and we can't guarantee its availability, quality, security or accept any liability.

Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response

journal contribution
posted on 2023-04-28, 06:30 authored by Jiaqi Liu, Hongji Hu, Samson YuSamson Yu, Hieu Trinh
As the climate crisis worsens, power grids are gradually transforming into a more sustainable state through renewable energy sources (RESs), energy storage systems (ESSs), and smart loads. Virtual power plants (VPP) are an emerging concept that can flexibly integrate distributed energy resources (DERs), managing manage the power output of each DER unit, as well as the power consumption of loads, to balance electricity supply and demand in real time. VPPs can participate in energy markets, enable self-scheduling of RESs, facilitate energy trading and sharing, and provide demand-side frequency control ancillary services (D-FCAS) to enhance the stability of the system frequency. As a result, studies considering VPPs have become the focus of recent energy research, with the purpose of reducing the uncertainty resulting from RESs distributed in the power grid and improving technology related to energy management system (EMS). However, comprehensive reviews of VPPs considering their formation, control techniques, and D-FCAS are still lacking in the literature. Therefore, this paper aims to provide a thorough overview of state-of-the-art VPP technologies for building sustainable power grids in the future. The review mainly considers the development of VPPs, the information transmission and control methods among DERs and loads in VPPs, as well as the relevant technologies for providing D-FCAS from VPPs. This review paper describes the significant economic, social, and environmental benefits of VPPs, as well as the technological advancements, challenges, and possible future research directions in VPP research.

History

Journal

Energies

Volume

16

Pagination

3705-3705

eISSN

1996-1073

Language

en

Issue

9

Publisher

MDPI AG

Usage metrics

    Research Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC