Supersymmetry and topology in coupled optical waveguides

Author

Queraltó Isach, Gerard

Director

Mompart Penina, Jordi

Ahufinger, Verònica

Date of defense

2020-09-14

ISBN

9788449096730

Pages

180 p.



Doctorate programs

Universitat Autònoma de Barcelona. Programa de Doctorat en Física

Abstract

La integració de tots els components bàsics per a la generació, manipulació i detecció de llum en xips òptics està impulsant avenços científics i tecnològics, per exemple, en el desenvolupament de tecnologies de la informació o de dispositius de detecció per a les tecnologies quàntiques. Degut a la seva flexibilitat, escalabilitat i la possibilitat d’observar directament l’evolució de la funció d’ona utilitzant senzilles tècniques de tractament d’imatges, les estructures fotòniques integrades són una plataforma ideal per a la simulació quàntica, és a dir, per emular fenòmens quàntics que apareixen en altres branques de la física. A més, aquestes analogies òptiques-quàntiques també permeten dissenyar circuits fotònics integrats amb propietats excepcionals. En aquesta tesi aprofitem propietats no trivials de la física quàntica per dissenyar nous dispositius fotònics integrats amb funcionalitats avançades i rendiments millorats, així com nous simuladors fotònics. Específicament, explotem les similituds entre les equacions de Helmholtz i de Schrödinger, que permeten reproduir la dinàmica temporal d’una partícula atrapada en un potencial periòdic amb l’evolució espacial de la llum propagant-se en guies d’ona acoblades, per aplicar transformacions supersimètriques i processos adiabàtics així com explorar geometries topològiques no trivials en sistemes de guies d’ona òptiques acoblades. En aquesta línia, la primera part de la tesi està dedicada a introduir els conceptes físics i matemàtics que descriuen les guies d’ona òptiques acoblades, les analogies òptiques-quàntiques i la supersimetria en òptica. La segona part de la tesi engloba el disseny de nous dispositius fotònics integrats combinant l’aplicació de transformacions supersimètriques per manipular modes espacials amb tècniques de passatge adiabàtic per introduir la robustesa. Primer presentem un nou mètode per a la multiplexació de modes espacials basat en guies d’ona supersimetriques, que filtren els modes, en combinació amb la tècnica de passatge adiabàtic espacial que es fa servir per transmetre eficient i robustament els modes escollits entre guies. De manera similar, mantenint-nos en la idea d’aplicar protocols d’enginyeria quàntica per dissenyar nous dispositius fotònics amb rendiments millorats, proposem connectar de manera adiabàtica estructures supersimètriques al llarg de la distància de propagació. En particular, aquesta tècnica l’utilitzem per dissenyar guies d’ona còniques, filtres de modes, divisors de feixos i interferòmetres, eficients i robustos. Finalment, la tercera part de la tesi està dedicada a la simulació de diferents fenòmens quàntics utilitzant sistemes fotònics. Per començar aquesta part, explorem els efectes que les transformacions supersimètriques indueixen en sistemes amb propietats topologies no trivials, les quals estan intrínsecament lligades a les simetries internes del sistema. Amb aquest objectiu, considerem el sistema més simple amb propietats topològiques no trivials i demostrem en sistemes de guies d’ona acoblades com la protecció topològica d’un estat pot ser suspesa i restablerta utilitzant transformacions supersimètriques. A més, per accedir a aquestes fases topològiques no trivials, un element clau és la introducció de camps artificials gauge (AGF) que controlen la dinàmica de partícules no carregades que d’una altra manera eludeixen la influència dels camps electromagnètics estàndards. En aquesta línia, investiguem la possibilitat d’induir AGF utilitzant llum amb moment orbital angular en comptes de manipular la geometria del sistema. Específicament, mesurem l’efecte de gàbia d’Aharonov-Bohm que està lligat amb la presència d’un camp magnètic. Aquesta tècnica permet accedir a diferent règims topològics en una sola estructura, un pas important per a la simulació quàntica utilitzant sistemes fotònics.


La integración de todos los componentes básicos para la generación, manipulación y detección de luz en chips ópticos está impulsando avances científicos y tecnológicos, por ejemplo, en el desarrollo de tecnologías de la información o en los dispositivos de detección para las tecnologías cuánticas. Debido a su flexibilidad, escalabilidad y a la posibilidad de observar directamente la evolución de la función de onda utilizando senzillas técnicas de trata, las estructuras fotónicas son ideales para la simulación cuántica, es decir, para emular fenómenos cuánticos que aparecen en otras ramas de la física. Es más, estas analogías ópticas-cuánticas también permiten diseñar nuevos circuitos fotónicos integrados con propiedades excepcionales. En esta tesis, aprovechamos propiedades no triviales que emergen de la física cuántica para diseñar nuevos dispositivos fotónicos integrados con funcionalidades avanzadas y rendimientos mejorados, así como nuevos simuladores fotónicos. Específicamente, explotamos las similitudes entre las ecuaciones de Helmholtz y de Schrödinger, que permiten reproducir la dinámica temporal de una particula atrapada en un potencial periódico con la evolución espacial de la luz propagándose en guías de onda, para aplicar transformaciones supersimétricas y procesos adiabáticos así como explorar geometrías topológicas no triviales en sistemas de guías de onda ópticas acopladas. La primera parte de la tesis está dedicada a introducir los conceptos matemáticos y físicos que describen las guías de onda ópticas acopladas, las analogías ópticas-cuánticas y la supersimetria óptica. La segunda parte de la tesis engloba el diseño de nuevos dispositivos fotónicos integrados basados en combinar transformaciones supersimétricas para manipular los modos espaciales con las técnicas adiabáticas para introducir robustez. Primero presentamos un nuevo método para la multiplexación de modos espaciales basado en guías de onda supersimétricas, que filtran los modos, en combinación con la técnica de pasaje adiabático espacial que se usa para transmitir de manera eficiente y robusta los modos escogidos entre guías. De manera similar, manteniéndonos en la idea de aplicar protocolos de ingeniería cuántica para diseñar nuevos dispositivos fotónicos con rendimientos superiores, proponemos conectar de manera adiabática estructuras supersimétricas a lo largo de la propagación. En particular, ésta técnica la utilizamos para diseñar guías de onda cónicas, filtros modales, divisores de haz e interferómetros. Finalmente, la tercera parte de la tesis está dedicada a la simulación de diferentes fenómenos físicos utilizando sistemas fotónicos. Para empezar, exploramos los efectos que las transformaciones supersimétricas inducen en sistemas con propiedades topológicas no triviales, las cuales están intrínsecamente ligadas a las simetrías internas del sistema. Con este objetivo, consideramos el sistema más simple con propiedades topológicas no triviales y demostramos en un sistema de guías de onda acopladas cómo la protección topológica de un estado puede ser suspendida y restablecida utilizando transformaciones supersimétricas. Además, para acceder a las fases topológicas no triviales, un elemento clave es la introducción de campos artificiales de gauge (AGF) que controlan la dinámica de partículas no cargadas que de otra manera eluden la influencia de los campos electromagnéticos. Es esta línea, investigamos la posibilidad de inducir AGF utilizando luz con momento orbital angular en lugar de manipular la geometría del sistema. Específicamente, medimos el fenómeno de jaula de Aharonov-Bohm que está ligado a la presencia de un campo magnético sintético. Esta técnica permite acceder a diferentes regímenes topológicos en una sola estructura, un paso importante para la simulación cuántica utilizando sistemas fotónicos.


The integration of all the basic components for light generation, manipulation and detection in optical chips is boosting scientific and technological advances, for instance, in the development of information technology and data communications or of sensing devices for quantum technologies. Due to its flexibility, scalability and of the possibility of directly observing the wavefunction evolution using simple imaging techniques, integrated photonic structures are an ideal playground for quantum simulation i.e., for emulating quantum phenomena appearing in other branches of physics. Moreover, these quantum-optical analogies also allow to design novel integrated photonic circuits with exceptional properties. In this context, in this thesis we harness non-trivial properties stemming from quantum physics to design novel integrated photonic devices with advanced functionalities and enhanced performances as well as to engineer novel photonic simulators. Specifically, we exploit the similarities between the Helmholtz and the Schrödinger equations, which allow to mimic the temporal dynamics of a single particle trapped in a lattice potential with the spatial evolution of a light beam propagating in an array of optical waveguides, to apply supersymmetric (SUSY) transformations and adiabatic passage processes as well as to explore non-trivial topological geometries in systems of coupled optical waveguides. In this vein, the first part of the thesis is devoted to introduce the mathematical concepts and physical ideas behind coupled optical waveguides, quantum-optical analogies and optical SUSY. After that, the second part of the thesis encompasses the design of novel integrated photonic devices by combining the spatial modal content manipulation offered by SUSY transformations with the robustness supplied by adiabatic passage techniques. In this regard, we start by presenting a novel method for mode division (de)multiplexing rooted on SUSY waveguides, which provide the mode filtering capabilities, in combination with a Spatial Adiabatic Passage protocol, which is used to efficiently and robustly transfer the desired modes between waveguides. Similarly, keeping on the idea of applying quantum engineering protocols to design novel photonic devices with enhanced performances, we also propose to connect, in an adiabatic fashion, SUSY structures along the propagation direction. In particular, this technique is used to engineer efficient and robust tapered waveguides, mode filters, beam splitters and interferometers. Finally, the third part of the thesis is dedicated to the photonic simulation of different phenomena. We explore first the effect that SUSY transformations induce in systems with non-trivial topological properties, which are intrinsically connected with the system's internal symmetries. To this aim, we consider the simplest system with non-trivial topological properties and demonstrate in waveguide arrays how the topological protection of a targeted state can be suspended and reestablished by applying SUSY transformations. Moreover, to access these non-trivial topological phases, a key step is the introduction of Artificial Gauge Fields (AGF) controlling the dynamics of uncharged particles that otherwise elude the influence of standard electromagnetic fields. To this end, we investigate the possibility of inducing AGF by injecting light beams carrying Orbital Angular Momentum, rather than manipulating the geometry of the system. Specifically, we measure the Aharonov-Bohm caging effect, which is directly related with the presence of a synthetic magnetic flux, in an array of coupled optical waveguides. This technique paves the way towards accessing different topological regimes in one single structure, representing an important step forward for quantum simulation in photonic structures.

Keywords

Guies d'ona òptiques; Guías de onda ópticas; Optical waveguides; Supersimetria; Supersimetría; Supersymmetry; Topologia; Topología; Topology

Subjects

00 - Prolegomena. Fundamentals of knowledge and culture. Propaedeutics

Knowledge Area

Ciències Experimentals

Documents

gqi1de1.pdf

5.122Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)