Soft Plasmomechanical Metamaterials for Sensing and Actuation

Author

Güell i Grau, Pau

Director

Álvarez Sanchez, Maria del Mar

Sepúlveda Martínez, Borja

Tutor

Pellicer Vilà, Eva M. (Eva Maria)

Date of defense

2021-01-21

ISBN

9788449099601

Pages

146 p.



Doctorate programs

Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials

Abstract

Durant l’última dècada, els materials intel·ligents han emergit com a una tendència fascinant en la ciència de materials. En aquest àmbit, els materials optomecànics tous són especialment interessants per desenvolupar dispositius de sensat i actuació innovadors gràcies a la naturalesa inalàmbrica dels sistemes òptics i la possibilitat de ser combinada amb altres tipus d’estimulació. En particular, la inclusió de nanopartícules o nanoestructures plasmòniques en substrats polimèrics tous comporta possibilitats interessants, com les característiques òptiques fàcils de modificar dels materials plasmonics i la gran elasticitat i robustesa dels materials tous. Aquesta nova classe de materials és referida en aquesta tesi com a metamaterials plasmomecànics tous. Tot i així, aquest particular camp d’estudi es relativament recent. Per aquest motiu, aquesta tesi està dedicada al desenvolupament de nous metamaterials plasmomecànics tous, portant a terme l’estudi detallat de les seves propietats òptiques i mecàniques i el seu disseny per a l’ús en aplicacions pràctiques en l’àmbit del sensat i l’actuació. Específicament, les dificultats d’implementar absorbents de llum en ampla de banda eficients en substrats flexibles o elàstics són abordades amb el desenvolupament d’un nou metamaterial basat en una capa de ferro nanoestructurat sobre una capa fina elastomèrica. Aquest nou metamaterial combina les ressonàncies plasmòniques amortides del ferro nanoestructurat amb l’absorció infraroja del PDMS per aconseguir una absorció independent de l’angle i amb un gran ample de banda. Aquest excepcional comportament òptic és explotat per a desenvolupar diversos dispositius foto-termo-mecànics inalàmbrics i innovadors. A través de l’explotació de les propietats magnètiques del ferro, el mateix metamaterial és utilitzat també per a desenvolupar un actuador inalàmbric i multi-funcional. Específicament, el control de la força i direcció de l’actuació magnètica és combinada amb la actuació lumínica, permetent condicions d’operació remotes i versàtils. A més a més, s’ha aconseguit la incorporació de la funcionalitat d’auto-sensat a través d’incloure una estructura de reixa fotònica a la part posterior de l’actuador. La resposta mecànica de l’actuador a qualsevol estímul extern es mostra com a un canvi de coloració i és quantificada en temps real a través de les imatges preses a través d’una càmera convencional. L’actuació remota i multi-estímul del dispositiu, juntament amb les seves capacitats d’auto-sensat estableixen les bases per al desenvolupament de mecanismes per a operacions en robòtica tova en ambients inaccessibles o perillosos. Finalment, s’ha demostrat el desenvolupament de la primera cavitat Fabry-Perot estirable i amplificada plasmònicament per al sensat òptic d’esforç. Aquest nou material consisteix en una matriu de “mitja-closques” d’or plasmonic auto-organitzades, les quals són auto-incrustades dins un substrat elastomèric arrugat. Aquesta morfologia dóna lloc a un comportament òptic poc convencional que pot ser afinat a través de les condicions de fabricació. El material presenta una resposta òptica intensa a l’esforç mecànic, amb sensibilitat similar a altres aproximacions basades en processos de fabricació més complexes. A més a més, presenta gran robustesa i deformabilitat, les quals permet la seva aplicació com a sensor inalàmbric d’esforç en superfícies corbades. En resum, aquesta tesi aborda diferents reptes en el desenvolupament de materials intel·ligents optomecànics tous per a diverses plataformes de sensat i actuació.


Durante la ultima década, los materiales inteligentes han emergido como una tendencia fascinante en la ciencia de materiales. En éste ámbito, los materiales optomecánicos blandos son especialmente interesantes para desarrollar dispositivos de sensado y actuación innovadores gracias a la naturaleza inalámbrica de los sistemas ópticos y la posibilidad de ser combinada con otros tipos de estimulación. En particular, la inclusión de nanopartículas o nanoestructuras plasmónicas en sustratos poliméricos blandos conlleva posibilidades interesantes, como las características ópticas fáciles de modificar de los materiales plasmónicos y la gran elasticidad y robustez de los materiales blandos. Ésta nueva clase de materiales es referida en esta tesis como a metamateriales plasmomecánicos blandos. Aún así, éste particular campo de estudio es relativamente reciente. Por éste motivo, ésta tesis está dedicada al desarrollo de nuevos metamateriales plasmomecánicos blandos, llevando a cabo el estudio detallado de sus propiedades ópticas y mecánicas y su diseño para el uso en aplicaciones prácticas en el ámbito del sensado y la actuación. Específicamente, las dificultades de implementar absorbentes lumínicos de ancho de banda amplio eficientes en sustratos flexibles o elásticos son abordadas con el desarrollo de un nuevo metamaterial basado en una capa de hierro nanoestructurado sobre una capa fina elastomèrica. Éste nuevo metamaterial combina las resonancias plasmónicas amortiguadas del hierro nanoestructurado con la absorción infrarroja del PDMS para conseguir una absorción independiente del ángulo y con un gran ancho de anda. Ése excepcional comportamiento óptico es explotado para desarrollar diferentes dispositivos foto-termo-mecánicos inalámbricos y innovadores. A través de la explotación de las propiedades magnéticas del hierro, el mismo metamaterial es utilizado para desarrollar un actuador inalámbrico y multi-funcional. Específicamente, el control de la fuerza y dirección de la actuación magnética es combinada con la actuación lumínica, permitiendo condiciones de operación remotas y versátiles. Además, se ha conseguido la incorporación de la funcionalidad de auto-sensado a través de incluir una estructura de malla fotónica en la parte posterior del actuador. La respuesta mecánica del actuador a cualquier estímulo externo se muestra como un cambio de coloración y es cuantificada en tiempo real a través de las imágenes tomadas a través de una cámara convencional. La actuación remota y multi-estímulo del dispositivo, juntamente con las capacidades de auto-sensado establecen las bases para el desarrollo de mecanismos para operaciones en robótica blanda en ambientes inaccesibles o peligrosos. Finalmente, se ha demostrado el desarrollo de la primera cavidad Fabry-Perot estirable y amplificada plasmónicamente para el sensado óptico de esfuerzo. Éste nuevo material consiste en una matriz de “media-cáscara” de oro plasmónico auto-organizadas, las cuales son auto-incrustadas dentro de un sustrato elastomérico arrugado. Ésta morfología da lugar a un comportamiento óptico poco convencional que puede ser ajustado a través delas condiciones de fabricación. El material presenta una respuesta óptica intensa al esfuerzo mecánico, con sensibilidad similar a otras aproximaciones basadas en procesos de fabricación más complejas. Además, presenta gran robustez y deformabilidad, las cuales permiten su aplicación como sensor inalámbrico de esfuerzo en superficies curvas. En resumen, ésta tesis aborda diferentes retos en el desarrollo de materiales inteligentes optomecánicos blandos para diversas plataformas de sensado y actuación.


During the last decade, smart materials have emerged as an exciting trend in materials science. Within this scope, soft optomechanical materials are especially appealing for developing innovative sensing and actuation devices due to the wireless nature of optics and the possibility to be combined with other types of stimuli. In particular, the inclusion of plasmonic nanoparticles or nanostructures into soft polymer substrates entail interesting possibilities, such as the easily-tunable optical features of plasmonic materials and large elasticity and robustness of soft materials. This new class of materials are referred as soft plasmomechanical metamaterials. However, this particular field of study is relatively recent. To that end, this thesis is dedicated to the development of new soft plasmomechanical metamaterials, bringing together the detailed study of their optical and mechanical properties with the design for their use into practical applications within the scope of sensing and actuation. Specifically, the difficulties of implementing efficient broadband light absorbers into flexible or stretchable substrates are tackled by the development of a novel metamaterial based on a nanostructured iron layer on a thin elastomer film. This new metamaterial combines the damped plasmonic resonances of the nanostructured iron with the infrared absorption of PDMS to achieve an unprecedented broadband and angle-independent light absorption in flexible materials. This exceptional optical behaviour, together with a large mismatch on the mechanical properties of both materials are exploited to develop diverse innovative untethered photo-thermo-mechanical devices. By exploiting the magnetic properties of iron, the same metamaterial is then used to develop an untethered, multi-functional actuator. Specifically, the control of the magnetic actuation strength and direction is combined with the broadband light actuation, enabling remote and versatile work operation conditions for soft-robotics applications. In addition, the incorporation of a self-sensing functionality is achieved by including a photonic grating structure at the actuator back-side, which provides structural coloration to the actuator. The mechanical response of the actuator to any external stimuli is displayed as a coloration shift and quantified in real-time by the images taken by a conventional camera. The remote and multi-stimuli actuation of the device, together with its self-sensing capabilities set the foundations for soft robotics operations in inaccessible or hazardous environments. Finally, the development of the first stretchable plasmonic-enhanced Fabry-Perot cavity is demonstrated for optical strain sensing. This new material consists on an array of self-assembled plasmonic gold semi-shells which are self-embedded into a wrinkled elastomer matrix. This peculiar morphology gives rise to unconventional optical behaviour that can be tuned by the manufacturing conditions. The material shows strong optical to mechanical strain, with similar sensitivity to other sensing approaches based in more complex fabrication processes. Furthermore, it shows large robustness and deformability, that enables its application as wireless pressure/strain sensing into curved surfaces. Overall, this thesis tackles different challenges in the development of soft smart optomechanical materials for diverse sensing and actuation platforms.

Keywords

Optomecànica; Optomecánica; Optomechanics; Materials tous; Materiales blandos; Soft materials; Actuadors; Actuadores; Actuators

Subjects

543 - Analytical chemistry

Knowledge Area

Ciències Experimentals

Documents

pgg1de1.pdf

7.262Mb

 

Rights

L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)