Microfluidics for Low Input Epigenomic Analysis and Its Application to Brain Neuroscience

Files
TR Number
Date
2021-01-06
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

The epigenome carries dynamic information that controls gene expression and maintains cell identity during both disease and normal development. The inherent plasticity of the epigenome paves new avenues for developing diagnostic and therapeutic tools for human diseases. Microfluidic technology has improved the sensitivity and resolution of epigenomic analysis due to its outstanding ability to manipulate nanoliter-scale liquid volumes. In this thesis, I report three projects focusing on low-input, cell-type-specific and spatially resolved histone modification profiling on microfluidic platforms. First, I applied Microfluidic Oscillatory Washing-based Chromatin Immunoprecipitation followed by sequencing (MOWChIP-seq) to study the effect of culture dimensionality, hypoxia stress and bacterium infection on histone modification landscapes of brain tumor cells. I identified differentially marked regions between different culture conditions. Second, I adapted indexed ChIPmentation and introduced mu-CM, a low-input microfluidic device capable of performing 8 assays in parallel on different histone marks using as few as 20 cells in less than 7 hours. Last, I investigated the spatially resolved epigenome and transcriptome of neuronal and glial cells from coronal sections of adult mouse neocortex. I applied unsupervised clustering to identify distinct spatial patterns in neocortex epigenome and transcriptome that were associated with central nervous system development. I demonstrated that our method is well suited for scarce samples, such as biopsy samples from patients in the context of precision medicine.

Description
Keywords
Microfluidics, Chromatin immunoprecipitation, next generation sequencing, histone modifications
Citation