Influence of Petroleum Deposit Geometry on Long Term Persistence of Residual Crude Oil

Files
TR Number
Date
2015-07-01
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Following the DWH oil spill event, crude oil reaching the shoreline of Gulf of Mexico produced petroleum oil deposit with a range of distinct geometries, including sphere tar balls and horizontal tar sheets. Numerical models were developed based on the Deep Water Horizon oil spill conditions to evaluate the influence of deposit geometry on long term persistence of residual NAPL oil. Two extreme deposit geometries were modeled in this study: the horizontal tar sheet and the spherical tar ball. Both two-dimensional modeling approach and three-dimensional modeling approach were applied to compare two contrasting geometries. The two-dimensional model results showed that sheet geometry deposits exhibited a greater obstruction to groundwater flow relative to the spherical deposits and induced a larger sulfate reducing zone downgradient of the NAPL source, resulting in significantly greater sulfate-based biodegradation of benzene. Three-dimensional models were constructed to assess the influence of key geometry parameters on oil deposit fate and persistence. Three parameters affecting deposit's geometric structure were recognized, including the upper horizontal area of the sheet deposit, the thickness of the sheet deposit, and the radius of the sphere deposit. The three-dimensional model results suggested that thickness of the sheet deposit and radius of the sphere deposit were important geometry factors impacting the fate and long term persistence of residual NAPL oil in the coastal environment. However, the influence of deposit geometry differed depending on the solubility of the different NAPL components. When high solubility compound and low solubility compound both exist in the oil deposit, the influence of deposit geometry on benzene degradation was significant, while the influence on naphthalene was almost negligible.

Description
Keywords
Petroleum oil deposit, geometry, numerical model, biodegradation, Deepwater Horizon oil spill, SEAM3D
Citation
Collections