Deep Representation Learning on Labeled Graphs

Files
TR Number
Date
2020-01-27
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

We introduce recurrent collective classification (RCC), a variant of ICA analogous to recurrent neural network prediction. RCC accommodates any differentiable local classifier and relational feature functions. We provide gradient-based strategies for optimizing over model parameters to more directly minimize the loss function. In our experiments, this direct loss minimization translates to improved accuracy and robustness on real network data. We demonstrate the robustness of RCC in settings where local classification is very noisy, settings that are particularly challenging for ICA. As a new way to train generative models, generative adversarial networks (GANs) have achieved considerable success in image generation, and this framework has also recently been applied to data with graph structures. We identify the drawbacks of existing deep frameworks for generating graphs, and we propose labeled-graph generative adversarial networks (LGGAN) to train deep generative models for graph-structured data with node labels. We test the approach on various types of graph datasets, such as collections of citation networks and protein graphs. Experiment results show that our model can generate diverse labeled graphs that match the structural characteristics of the training data and outperforms all baselines in terms of quality, generality, and scalability. To further evaluate the quality of the generated graphs, we apply it to a downstream task for graph classification, and the results show that LGGAN can better capture the important aspects of the graph structure.

Description
Keywords
Machine learning
Citation