Safety of Self-driving Cars: A Case Study on Lane Keeping Systems

TR Number
Date
2020-07-07
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Virginia Tech
Abstract

Machine learning is a powerful method to handle the self-driving problem. Researchers use machine learning to construct a neural network and train it to drive the car. A self-driving car is a safety-critical system. However, the neural network is not necessarily reliable. The output of a neural network can be easily influenced by many factors, such as the quality of training data and the runtime environment. Also, it takes time for the neural network to generate the output. That is, the self-driving car may not respond in time. Such weaknesses will increase the risk of accidents. In this thesis, considering the safety of self-driving cars, we apply a delay-aware shielding mechanism to the neural network to protect the self-driving car. Our approach is an improvement based on previous research on runtime safety enforcement for general cyber-physical systems that did not consider the delay to generate the output. Our approach contains two steps. The first is to use formal language to specify the safety properties of the system. The second step is to synthesize the specifications into a delay-aware enforcer called the shield, which enforces the violated output to satisfy the specifications during the whole delay. We use a lane keeping system as a small but representative case study to evaluate our approach. We utilize an end-to-end neural network as a typical implementation of such a lane keeping system. Our shield supervises those outputs of the neural network and verifies the safety properties during the whole delay period with a prediction. The shield can correct it if a violation exists. We use a 1/16 scale truck and construct a curvy lane to test our approach. We conduct the experiments both on a simulator and a real road to evaluate the performance of our proposed safety mechanism. The result shows the effectiveness of our approach. We improve the safety of a self-driving car and we will consider more comprehensive driving scenarios and safety features in the future.

Description
Keywords
Self-driving, Neural Network, Lane Detection, Specification, Enforcement, Delay, Prediction.
Citation
Collections