Počet záznamů: 1  

Dynamic analysis of the COMPASS-U tokamak for the design of foundation

  1. 1.
    0560197 - ÚFP 2023 RIV CH eng J - Článek v odborném periodiku
    Ortwein, R. - Hromádka, Jakub - Kovařík, Karel - Havlíček, Josef - Šesták, David - Yanovskiy, Vadim - Pánek, Radomír
    Dynamic analysis of the COMPASS-U tokamak for the design of foundation.
    Fusion Engineering and Design. Roč. 182, September (2022), č. článku 113221. ISSN 0920-3796. E-ISSN 1873-7196
    Grant CEP: GA MŠMT(CZ) EF16_019/0000768
    Institucionální podpora: RVO:61389021
    Klíčová slova: COMPASS-U * tokamak * dynamic analysis
    Obor OECD: Fluids and plasma physics (including surface physics)
    Impakt faktor: 1.7, rok: 2022
    Způsob publikování: Omezený přístup
    https://www.sciencedirect.com/science/article/pii/S0920379622002174?via%3Dihub

    The COMPASS-U tokamak is currently at the final design stage. In order to design safe and reliable foundation slab for the machine, a dynamic analysis of the deformations and stresses during the most severe plasma disruptions was necessary. A global FEM model has been built including simplified geometry of the entire tokamak as well as the foundation slab and its supporting concrete pillars and the surrounding soil. Vertical forces from the worst-case axisymmetric plasma disruption scenarios were applied to the vacuum vessel and the coil system (CS, PF, TF), causing vibration of the entire tokamak. The deformations and stresses transmitted to the anchors in the reinforced concrete slab were computed. Based on the presented model, the initial thickness of the concrete slab of 1 m was decreased by 20% to 0.8 m for the final design. Maximum tensile stress of 1.71 MPa was found in the brittle concrete, indicating that no cracking will occur during the worst-case axisymmetric disruptions. Motion of the vacuum vessel due to vertical forces was analyzed, showing maximum deformations below 1.13 mm over the course of the worst disruption. Velocities below 0.29 m/s and accelerations below 287 m/s2. The computational cost was analyzed in details, providing estimates for the computational time, RAM requirements of 25.8 GB/MDOF (77.4 GB/Mnode) and hard disc requirements for the results file of 0.5 GB/MDOF (1.5 GB/Mnode) for each transient time step.
    Trvalý link: https://hdl.handle.net/11104/0333204

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.