Počet záznamů: 1  

Fully computable a posteriori error bounds for eigenfunctions

  1. 1.
    0561025 - MÚ 2023 RIV DE eng J - Článek v odborném periodiku
    Liu, X. - Vejchodský, Tomáš
    Fully computable a posteriori error bounds for eigenfunctions.
    Numerische Mathematik. Roč. 152, č. 1 (2022), s. 183-221. ISSN 0029-599X. E-ISSN 0945-3245
    Grant CEP: GA ČR(CZ) GA20-01074S
    Institucionální podpora: RVO:67985840
    Klíčová slova: eigenvalue problems * Laplace eigenvalues * approximation
    Obor OECD: Pure mathematics
    Impakt faktor: 2.1, rok: 2022
    Způsob publikování: Omezený přístup
    https://doi.org/10.1007/s00211-022-01304-0

    For compact self-adjoint operators in Hilbert spaces, two algorithms are proposed to provide fully computable a posteriori error estimate for eigenfunction approximation. Both algorithms apply well to the case of tight clusters and multiple eigenvalues, under the settings of target eigenvalue problems. Algorithm I is based on the Rayleigh quotient and the min-max principle that characterizes the eigenvalue problems. The formula for the error estimate provided by Algorithm I is easy to compute and applies to problems with limited information of Rayleigh quotients. Algorithm II, as an extension of the Davis–Kahan method, takes advantage of the dual formulation of differential operators along with the Prager–Synge technique and provides greatly improved accuracy of the estimate, especially for the finite element approximations of eigenfunctions. Numerical examples of eigenvalue problems of matrices and the Laplace operators over convex and non-convex domains illustrate the efficiency of the proposed algorithms.
    Trvalý link: https://hdl.handle.net/11104/0333781

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    Vejchodsky.pdf2795.1 KBVydavatelský postprintvyžádat
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.