Počet záznamů: 1  

Plasma polymers as targets for laser-driven proton-boron fusion

  1. 1.
    0575034 - ÚJF 2024 RIV CH eng J - Článek v odborném periodiku
    Tosca, M. - Molloy, D. - McNamee, A. - Pleskunov, P. - Protsak, M. - Biliak, K. - Nikitin, D. - Kousal, J. - Krtouš, Z. - Hanyková, L. - Hanuš, J. - Biederman, H. - Foster, T. - Nersisyan, G. - Martin, P. - Ho, C. - Macková, Anna - Mikšová, Romana - Borghesi, M. - Kar, S. - Istokskaia, V. - Levy, Yoann - Picciotto, A. - Giuffrida, L. - Margarone, D. - Choukourov, A.
    Plasma polymers as targets for laser-driven proton-boron fusion.
    Frontiers in Physics. Roč. 11, JUL (2023), č. článku 1227140. ISSN 2296-424X. E-ISSN 2296-424X
    Grant CEP: GA MŠMT EF16_013/0001812; GA MŠMT EF15_003/0000445
    Institucionální podpora: RVO:61389005 ; RVO:68378271
    Klíčová slova: plasma polymer * thin films * boron nitride * proton-boron fusion * ultra-high intense lasers
    Obor OECD: Nuclear physics; Optics (including laser optics and quantum optics) (FZU-D)
    Impakt faktor: 3.1, rok: 2022
    Způsob publikování: Open access
    https://doi.org/10.3389/fphy.2023.1227140

    Laser-driven proton-boron (pB) fusion has been gaining significant interest for energetic alpha particles production because of its neutron-less nature. This approach requires the use of B- and H-rich materials as targets, and common practice is the use of BN and conventional polymers. In this work, we chose plasma-assisted vapour phase deposition to prepare films of oligoethylenes (plasma polymers) on Boron Nitride BN substrates as an advanced alternative. The r.f. power delivered to the plasma was varied between 0 and 50 W to produce coatings with different crosslink density and hydrogen content, while maintaining the constant thickness of 1 mu m. The chemical composition, including the hydrogen concentration, was investigated using XPS and RBS/ERDA, whereas the surface topography was analyzed using SEM and AFM. We triggered the pB nuclear fusion reaction focusing laser pulses from two different systems (i.e., the TARANIS multi-TW laser at the Queen's University Belfast (United Kingdom) and the PERLA B 10-GW laser system at the HiLASE center in Prague (Czech Republic)) directly onto these targets. We achieved a yield up to 10(8) and 10(4) alpha particles/sr using the TARANIS and PERLA B lasers, respectively. Radiative-hydrodynamic and particle-in-cell PIC simulations were performed to understand the laser-target interaction and retrieve the energy spectra of the protons. The nuclear collisional algorithm implemented in the WarpX PIC code was used to identify the region where pB fusion occurs. Taken together, the results suggest a complex relationship between the hydrogen content, target morphology, and structure of the plasma polymer, which play a crucial role in laser absorption, target expansion, proton acceleration and ultimately nuclear fusion reactions in the plasma.
    Trvalý link: https://hdl.handle.net/11104/0344869

     
    Název souboruStaženoVelikostKomentářVerzePřístup
    0575034_Corrigendum.pdf2537.4 KBCC licenceVydavatelský postprintpovolen
    0575034 .pdf02 MBCC licenceVydavatelský postprintpovolen
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.