Počet záznamů: 1  

Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum

  1. 1.
    0579366 - ÚPT 2024 RIV US eng J - Článek v odborném periodiku
    Brzobohatý, Oto - Duchaň, Martin - Jákl, Petr - Ježek, Jan - Šiler, Martin - Zemánek, Pavel - Simpson, Stephen Hugh
    Synchronization of spin-driven limit cycle oscillators optically levitated in vacuum.
    Nature Communications. Roč. 14, č. 1 (2023), č. článku 5441. E-ISSN 2041-1723
    Grant CEP: GA ČR(CZ) GF21-19245K; GA MŠMT(CZ) EF16_026/0008460
    Grant ostatní: AV ČR(CZ) AP2002
    Program: Akademická prémie - Praemium Academiae
    Institucionální podpora: RVO:68081731
    Klíčová slova: optical levitation * optical binding * synchronization
    Obor OECD: Optics (including laser optics and quantum optics)
    Impakt faktor: 16.6, rok: 2022
    Způsob publikování: Open access
    https://www.nature.com/articles/s41467-023-41129-5

    We explore, experimentally and theoretically, the emergence of coherent coupled oscillations and synchronization between a pair of non-Hermitian, stochastic, opto-mechanical oscillators, levitated in vacuum. Each oscillator consists of a polystyrene microsphere trapped in a circularly polarized, counter-propagating Gaussian laser beam. Non-conservative, azimuthal forces, deriving from inhomogeneous optical spin, push the micro-particles out of thermodynamic equilibrium. For modest optical powers each particle shows a tendency towards orbital circulation. Initially, their stochastic motion is weakly correlated. As the power is increased, the tendency towards orbital circulation strengthens and the motion of the particles becomes highly correlated. Eventually, centripetal forces overcome optical gradient forces and the oscillators undergo a collective Hopf bifurcation. For laser powers exceeding this threshold, a pair of limit cycles appear, which synchronize due to weak optical and hydrodynamic interactions. In principle, arrays of such Non-Hermitian elements can be arranged, paving the way for opto-mechanical topological materials or, possibly, classical time crystals. In addition, the preparation of synchronized states in levitated optomechanics could lead to new and robust sensors or alternative routes to the entanglement of macroscopic objects.
    Trvalý link: https://hdl.handle.net/11104/0348201

     
     
Počet záznamů: 1  

  Tyto stránky využívají soubory cookies, které usnadňují jejich prohlížení. Další informace o tom jak používáme cookies.