|
[1] Helm, J.M., Swiergosz, A.M., Haeberle, H.S., Karnuta, J.M., Schaffer, J.L., Krebs, V.E., Spitzer, A.I., & Ramkumar, P.N. (2020). Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Current Reviews in Musculoskeletal Medicine, 13, 69-76. [2] Sarker, I.H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. Sn Computer Science, 2. [3] Nwankpa, C., Ijomah, W.L., Gachagan, A., & Marshall, S. (2018). Activation Functions: Comparison of trends in Practice and Research for Deep Learning. ArXiv, abs/1811.03378. [4] Barron, J.T. (2017). A General and Adaptive Robust Loss Function. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4326-4334. [5] Albawi, S., Mohammed, T.A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1-6. [6] Sherstinsky, A. (2018). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. ArXiv, abs/1808.03314. [7] Gopinath, S., Ghanathe, N., Seshadri, V., & Sharma, R. (2019). Compiling KB-sized machine learning models to tiny IoT devices. Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. [8] Warden, P., & Situnayake, D. (2019). TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers. [9] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., & Zhang, X. (2016). TensorFlow: A system for large-scale machine learning. USENIX Symposium on Operating Systems Design and Implementation. [10] Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient inference: A whitepaper. ArXiv, abs/1806.08342. [11] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv, abs/1704.04861. [12] Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510-4520. [13] Smith, R.W. (2007). An Overview of the Tesseract OCR Engine. Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), 2, 629-633. [14] Redmon, J., Divvala, S.K., Girshick, R.B., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788. [15] Hsu, G.J., Chen, J., & Chung, Y. (2013). Application-Oriented License Plate Recognition. IEEE Transactions on Vehicular Technology, 62, 552-561.
|