|
[1] C.C.Lee, Effects of the bulk volume fraction on solutions of modified Poisson–Boltzmann equations, Journal of Mathematical Analysis and Applications 437(2), (2016) 1101–1129. [2] C.C.Lee, Asymptotic analysis of charge conserving Poisson–Boltzmann equations with variable dielectric coefficients, Discrete and Continuous Dynamical Systems - Series A 36(6), (2016) 3251–3276. [3] C.C.Lee, with H. Lee, Y.K. Hyon, T.-C. Lin and C. Liu, Boundary layer solutions of Charge Conserving Poisson–Boltzmann equations: one-dimensional case, Communications in Mathematical Sciences 14(4), (2016) 911–940. [4] C.C.Lee, The charge conserving Poisson–Boltzmann equations: Existence, uniqueness, and maximum principle, Journal of Mathematical Physics 55, (2014) 051503. [5] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin, 2001. [6] M. Z. Bazant, K. T. Chu and B. J. Bayly, Current-Voltage relations for electrochemical thin films, SIAM J. Appl. Math., 65 (2005), 1463-1484. [7] A. Glitzky and R. Hunlich, Energeric estimates and asymptotics for electro-reaction-diffustion systems, Z. Angew. Math. Math,. 77 (1997), 823-832. [8] D. Lacoste, G. I. Menon, M. Z. Bazant and J. F. Joanny, Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane, Eur. Phys. J. E, 28 (2009), 243-264. [9] R. Ryham, C. Liu and Z. Q. Wang, On electro-kinetic uids: One dimensional configurations, Discrete Contin Dyn. Syst. B, 6 (2006), 357-371. [10] R. Ryham, C. Liu and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets, Discrete Contin Dyn. Syst. B, 8 (2007), 649-661. [11] D. T. Conroy, R. V. Craster, O. K. Matar and D. T. Papageorgiou, Dynamics and stability of an annular electrolyte film, J. Fluid Mech., 656 (2010), 481-506. [12] M. A. Fontelos and L. B. Gamboa, On the structure of double layers in Poisson-Boltzmann equation, Discrete Contin Dyn. Syst. B, 17 (2012), 1939-1967. [13] D. Bothe, A. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316. [14] Y. Hyon, A Mathematical Model For Electrical Activity in Cell Membrane: Energetic Variational Approach, work in progress. [15] L. Wan, S. Xu, M. Liao, C. Liu and P. Sheng, Self-consistent approach to global charge neutrality in electrokinetics: A surface potential trap model, Phys. Rev. X, 4 (2014), 011042. [16] F. Ziebert, M. Z. Bazant and D. Lacoste, Effective zero-thickness model for a conductive membrane driven by an electric field, Phys. Rev. E, 81 (2010), 031912. [17] L. Lanzani and Z. Shen, On the Robin boundary condition for Laplace's equation in Lipschit domains, Commun. Partial Differ. Eq., 29 (2004), 91-109 [18] 數學物理趣談: 從微積分到變分法. 出版社: 科學出版社. 作者: 張天蓉. 出版日: 2015/04/01 [19] 人物圖片來源: 維基百科裡各個人物介紹. [20]《數學恩仇錄: 數學史上的十大爭端》. 作者: 哈爾.赫爾曼(Hal Hellman). 譯者: 范偉. 出版日:2016/1/25 [21] 交通大學線上開放課程(2012): 變分學導論.授課教師:林琦焜教授.
|